Building a
serverless Data
Lakehouse from
spare parts

Jacopo Tagliabue, Ciro Greco and Luca Bigon
CDMS @ VLDB, Vancouver, 2023

Data Lake + Data Warehouse = Data Lakehouse

e Centralization: one layer for storage and governance.
e Flexibility: ETL, Bl, data science, ML (Python+SQL)

ower the entry bar to do data work.

m Democratization:

ckehouse: A New Generation of Open Platforms that Uh

Data Warehousing and Advanced Analytics

Michael Armbrust!, Ali Ghodsi?, Reynold Xin!, Matei Zaharia'3
Databricks, 2UC Berkeley, *Stanford University

quality and governance downstream. In this architecture, a small
subset of data in the lake would later be ETLed to a downstream

Abstract data warehouse (such as Teradata) for the most important decision
This paper argues that the data warehouse architecture as we know support and BI applications. The use of open formats also made
it today will wither in the coming years and be replaced by a new data lake data directly accessible to a wide range of other analytics

architectural nattern the ILakehouse which will (i) he haced on anen s i e i S TG s e R e e s G

A Lakehouse 1s more than the sum of its parts

Object storage Table format Data catalog

SQL engine Runtime Orchestrator

A Lakehouse 1s more than the sum of its parts

built by merely assembling parts. Despite sounding idealistic, a
reasonably functional stack can be built today by solely leveraging
open source projects like Ibis (language), Substrait (IR), Calcite
(optimizer), Velox (execution), and a distributed runtime such as
Spark, Ray, or a|serverlesg architecture.

Building a Lakehouse from spare parts...except

for one
Amazon S3 Apache Iceberg
DuckDB 2?7 Prefect

. Data development cycle

Data collection

|

Experimentation

|

Evaluation and
Deployment

|

Monitoring and
Response

How many lines of
| extra code do you
need at each step?

& #1: Minimize infrastructure

« B o0 m =5 OO0 @ B D

o (no subject) nbox x
&
O n v
5 ' tome N
> The both of you should talk about Jacopo's btw company.- is fml-ing with spark

“‘FML-ING WITH SPARK™*

* Tagliabue (2023), personal communication

& #1: Minimize infrastructure

We care about this

We do NOT care
about this

e

(1) no sharing (2) virtual machines (3) containers (4) lambdas
|
| &pP - &pp | &pp - app | app app app
runtime runtime [runtime runtime [runtime runtime
(O] oS
oS (O] 0S
VM VM
H/W H/W H/W H/W
serverfull serverless

. Data development cycle

Data collection <

|

Experimentation
How long do you wait
to do a full loop?
Evaluation and

Deployment

|

Monitoring and
Response

@ #2: Loop time (a true story)

t.: | have a function doing data scienc-y aef handier(event, context):
start = time.time ()
Sthf. import pandas as pd
DATA SCIENCE HERE
return {
"metadata": {
"eventId":
str (uuid.uuid4()),
"time in ms":
int((time.time() - start) *
1000.0)
b,

"versions": {

'pandas': pd.___version

@ #2: Loop time (a true story)

t.: I have a function doing data scienc-y aef handier(event, context):

start = time. time ()

Sthf. import pandas as pd
DATA SCIENCE HERE
t,: | realize I need to do some scraping return {
. . "metadata": {
with Selenium. eventIdr

str(uuid.uuid4 ()),
"time in ms":
int((time.time() - start) *
1000.0)

b,

"versions": {

'pandas': pd.___version

@ #2: Loop time (a true story)

t.: I have a function doing data scienc-y aef handier(event, context):

start = time. time ()

Sthf. import pandas as pd
DATA SCIENCE HERE
t,: | realize I need to do some scraping return {
. . "metadata": {
with Selenium. eventIdr

str(uuid.uuid4 ()),

t,: | want to run my function with the "time_in ms":
int((time.time() - start) *
new package.

1000.0)
b,

"versions": {

'pandas': pd.___version

@ #2: Loop time (a true story)

AWS Lambda Bauplan serverless

1. Update requirements.txt 1. Update the function

2. CLI: serverless deploy 2. CLI: bauplan run
a. Update container a. Connect to cloud
b. Update ECR b. Build function
c. Update Cloud formation 3 |Invoke the function

3. Invoke the function

@ #2: Loop time (a true story)

AWS Lambda Bauplan serverless

r - Al
ese [serverless — -2sh —107x30

apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apo@MacBook-Pro serverless
apoeMacBook-Pro serverless

XXX RN

Feedback loop: 70s

https://docs.google.com/file/d/114qxFlZwDsQOplDU7S1zlGz-ZSk1YHi1/preview

@ #2: Loop time (a true

AWS Lambda

story)

Bauplan serverless

apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro

serverless
serverless

serverless
serverless
serverless
serverless

serverless

serverless

serverless
serverless
serverless
serverless
serverless
serverless
serverless
serverless
serverless
serverless

%
o
%
%
9

vi requirements.txt
serverless deploy

Deploying vldb-serverless-runner to stage dev

Service deployed to stack vldb-serverless-runner-dev

vldblambdarunner:

vldb-serverless-runner-dev-vldblambdarunner

apo@MacBook-Pro serverless % cd ..

apo@MacBook-Pro vldb_demo % python3 invoke.py
I

Feedback loop: 70s

r

apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
apo@MacBook-Pro
@po@MacBook—Pro

bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan
bauplan

NI

Feedback loop: 7s

https://docs.google.com/file/d/14HE0dMkZTMjxkKtPQWDkZjQfyJYFfwRi/preview

Data development at the speed of thought

e No Docker build.
e No registry upload. 30X

e (Company-wide smart cache.

Feedback loop seconds

10X

Faster than local!

Bauplan Lambda EMR

Open source to the rescue?

OS serverless is built around micro-services use OpenWhisk OpenFaas

Cases:

e many small, concurrent functions; “

e fullisolation;
e small latency, small individual throughput.

OpenLambda

K

Open source to the rescue?

We need:

e heterogenous functions;
e runtime isolation, but data sharing;
e medium latency, very high individual throughput.

/ Assembling a Query Engine From Spare Parts

Mosha Pasumansky
Firebolt Analytics
moshap@firebolt.io

ABSTRACT

Building a new cloud data warehouse is a daunting challenge, re-
quiring massive investments into both the query engine and sur-

rounding cloud infrastructure. Given the mature space, it might
seem like a Herculean task to enter the market as a small startup.

At Firebolt we assembled a working, high-performance cloud

Benjamin Wagner
Firebolt Analytics
benjamin.wagner@firebolt.io

Ecosystem JDBC Data Science

Bl Tools

~ ~ G ~

T saL T SaL v

TsaL v

~

Compute Firebolt Engine
Customer- Facing

Open source to the rescue?

We need:

e heterogenous functions; Invest in differentiating
e runtime isolation, but data sharing; features, assemble the
e medium latency, very high individual throughpU BT 8 o] I o F: TN o E g 53

/ Assembling a Query Engine From Spare Parts \

Mosha Pasumansky Benjamin Wagner
Firebolt Analytics Firebolt Analytics
moshap@firebolt.io benjamin.wagner@firebolt.io
ABSTRACT
Building a new cloud data warehouse is a daunting challenge, re- \ Ecosystem [o w rea— g }
quiring massive investments into both the query engine and sur- = 2 - = -
rounding cloud infrastructure. Given the mature space, it might : SQL v : SAL v : SAL v
seem like a Herculean task to enter the market as a small startup. Compute ‘ @ Firebolt Engine ‘
At Firebolt we assembled a working, high-performance cloud o hE Customer-Facing

Programs must be
written for people
to read, and only
incidentally for
machines to execute
- H. Abelson

Pipelines must be
written for people
to read, and only
incidentally for
cloud to execute

- Bauplan

7]

https://www.bauplanlabs.com/

BAUPLAN

