
Building a
serverless Data
Lakehouse from
spare parts
Jacopo Tagliabue, Ciro Greco and Luca Bigon
CDMS @ VLDB, Vancouver, 2023

● Centralization: one layer for storage and governance.

● Flexibility: ETL, BI, data science, ML (Python+SQL)

■ Democratization: lower the entry bar to do data work.

Data Lake + Data Warehouse = Data Lakehouse

A Lakehouse is more than the sum of its parts

SQL engine Runtime Orchestrator

Object storage Table format Data catalog

A Lakehouse is more than the sum of its parts

SQL engine Runtime Orchestrator

Object storage Table format Data catalog

Building a Lakehouse from spare parts…except
for one

DuckDB ??? Prefect

Amazon S3 Apache Iceberg Nessie

Goal #1: minimize
infrastructure

● Terrible use of data
scientists’ time/skills.

● Unnecessarily long
production cycles.

Data collection

Experimentation

Evaluation and
Deployment

Monitoring and
Response

👇 Data development cycle

How many lines of
extra code do you
need at each step?

#1: Minimize infrastructure

“FML-ING WITH SPARK”*

* Tagliabue (2023), personal communication

#1: Minimize infrastructure

We care about this

We do NOT care
about this

serverfull serverless

Data collection

Experimentation

Evaluation and
Deployment

Monitoring and
Response

How long do you wait
to do a full loop?

● Data development requires
to loop over production
data. ≠ backend or frontend
development.

👇 Data development cycleGoal #2: minimize
loop time

#2: Loop time (a true story)

t1: I have a function doing data scienc-y
stuff.

def handler(event, context):

start = time.time()

import pandas as pd

DATA SCIENCE HERE

return {

"metadata": {

"eventId":

str(uuid.uuid4()),

"time_in_ms":

int((time.time() - start) *

1000.0)

},

"versions": {

'pandas': pd.__version__

}

}

#2: Loop time (a true story)

t1: I have a function doing data scienc-y
stuff.

t2: I realize I need to do some scraping
with Selenium.

def handler(event, context):

start = time.time()

import pandas as pd

DATA SCIENCE HERE

return {

"metadata": {

"eventId":

str(uuid.uuid4()),

"time_in_ms":

int((time.time() - start) *

1000.0)

},

"versions": {

'pandas': pd.__version__

}

}

#2: Loop time (a true story)

t1: I have a function doing data scienc-y
stuff.

t2: I realize I need to do some scraping
with Selenium.

t3: I want to run my function with the
new package.

def handler(event, context):

start = time.time()

import pandas as pd

DATA SCIENCE HERE

return {

"metadata": {

"eventId":

str(uuid.uuid4()),

"time_in_ms":

int((time.time() - start) *

1000.0)

},

"versions": {

'pandas': pd.__version__

}

}

#2: Loop time (a true story)

AWS Lambda

1. Update requirements.txt
2. CLI: serverless deploy

a. Update container
b. Update ECR
c. Update Cloud formation

3. Invoke the function

Bauplan serverless

1. Update the function
2. CLI: bauplan run

a. Connect to cloud
b. Build function

3. Invoke the function

Bauplan serverless

#2: Loop time (a true story)

AWS Lambda

Feedback loop: 70s

https://docs.google.com/file/d/114qxFlZwDsQOplDU7S1zlGz-ZSk1YHi1/preview

Bauplan serverless

#2: Loop time (a true story)

AWS Lambda

Feedback loop: 70s Feedback loop: 7s

https://docs.google.com/file/d/14HE0dMkZTMjxkKtPQWDkZjQfyJYFfwRi/preview

Data development at the speed of thought

● No Docker build.

● No registry upload.

● Company-wide smart cache.

Fe
ed

ba
ck

 lo
op

 s
ec

on
ds

LambdaBauplan EMR

Faster than local!

10X

30X

Open source to the rescue?

OS serverless is built around micro-services use
cases:

● many small, concurrent functions;
● full isolation;
● small latency, small individual throughput.

OpenWhisk OpenFaas

OpenLambda

Open source to the rescue?

We need:

● heterogenous functions;
● runtime isolation, but data sharing;
● medium latency, very high individual throughput.

Open source to the rescue?

We need:

● heterogenous functions;
● runtime isolation, but data sharing;
● medium latency, very high individual throughput.

Invest in differentiating
features, assemble the
rest from “spare parts”!

Programs must be
written for people
to read, and only
incidentally for
machines to execute
- H. Abelson

Pipelines must be
written for people
to read, and only
incidentally for
cloud to execute
- Bauplan

Want to stay up-to-date,
collaborate or just chat? Reach
out or check bauplanlabs.com!

22

https://www.bauplanlabs.com/

BAUPLANBAUPLANBAUPLANBAUPLAN

