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Motivation

� Stream data analytics is growing increasingly complex

� Streams are enriched and analyzed with historic data

� Business reporting
� Log monitoring
� Logistics

� Stream processing engines inefficient for historic data

� Database systems not built for ephemeral data

Streams

� Complex stream analytics in a single system is hard
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Current Solutions

� Historic data in stream processing engines

� Read-only
� Optimized for filter-and-aggregate queries

� View-based stream processing

Ë Highly performant
� Requires fine-tuned and invasive integration
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� Current solutions are complex to implement and integrate
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Relation-Based Integration

� Relations are entry point for all data in a DBMS

� Database systems utilize physical data independence

Ë Masks remote data access
Ë Independence of storage formats, e.g., Parquet
Ë Optimized access paths for OLTP or OLAP

Ë New relation types transparent to other operators

� Streams are ephemeral in nature

� Scanned data is unknown at query start
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Masking Unknown Scan Boundaries

� Scans rely on fixed set of accessed data, i.e. TIDs

� Stream data arrives during query processing

� Scan has to detect stream depletion

� Control messages would break SQL interface
Ë Detect stream depletion from metadata

�uery start

R
egular �

uery

� Queries with session-window semantics
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Masking Data Ephemerality

� Scans rely on data to be fully and durably materialized

� Streams are too voluminous be materialized fully

� Scans have to deal with short-lived data

Ë Ring buffer provides required abstraction
� Requires careful overflow checks for variable-sized data

Γ 

σ

⇞

Stream

σ

⨝

Table

� Ring-buffered cache with overflow handling



6

Masking Data Ephemerality

� Scans rely on data to be fully and durably materialized

� Streams are too voluminous be materialized fully

� Scans have to deal with short-lived data

Ë Ring buffer provides required abstraction
� Requires careful overflow checks for variable-sized data

Γ 

σ

⇞

Stream

σ

⨝

Table

� Ring-buffered cache with overflow handling



6

Masking Data Ephemerality

� Scans rely on data to be fully and durably materialized

� Streams are too voluminous be materialized fully

� Scans have to deal with short-lived data

Ë Ring buffer provides required abstraction
� Requires careful overflow checks for variable-sized data

Γ 

σ

⇞

Stream

σ

⨝

Table

write head

read head

scan step

� Ring-buffered cache with overflow handling



6

Masking Data Ephemerality

� Scans rely on data to be fully and durably materialized

� Streams are too voluminous be materialized fully

� Scans have to deal with short-lived data

Ë Ring buffer provides required abstraction
� Requires careful overflow checks for variable-sized data

Γ 

σ

⇞

σ

⨝

Table

write head

read head

scan step

� Ring-buffered cache with overflow handling



7

Experimental Analysis - Analytical Performance

Query throughput with increasing thread count
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� TPC-H SF 100 where lineitem is treated as a stream

Ë Near-linear scaling to all physical cores

Ë 3× speedup over established stream processing engines
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Experimental Analysis - Query Overhead

Runtime overhead of attaching a query over data ingestion
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� Runtime difference of evaluating a query to parsing the data in each system

Ë Next to no overhead over insert processing

Ë Attaching multiple queries has no additional cost
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Conclusion

� Relation-based stream processing

Ë Ring-buffered cache for ephemeral data
Ë Session-windowed semantics masks unknown stream bounds
Ë Minimally invasive, fully SQL-based integration
Ë Full functionality for historic data

Ë Higher ease of integration than view-based solutions

Ë More performant than stream processing engines
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