
1

Relation-Based In-Database Stream Processing

Christian Winter, Thomas Neumann, Alfons Kemper

Technical University of Munich

CDMS @ VLDB 2023



2

Motivation

� Stream data analytics is growing increasingly complex

� Streams are enriched and analyzed with historic data

� Business reporting
� Log monitoring
� Logistics

� Stream processing engines inefficient for historic data

� Database systems not built for ephemeral data

Streams

� Complex stream analytics in a single system is hard



2

Motivation

� Stream data analytics is growing increasingly complex

� Streams are enriched and analyzed with historic data

� Business reporting
� Log monitoring
� Logistics

� Stream processing engines inefficient for historic data

� Database systems not built for ephemeral data

Streams

� Complex stream analytics in a single system is hard



2

Motivation

� Stream data analytics is growing increasingly complex

� Streams are enriched and analyzed with historic data

� Business reporting
� Log monitoring
� Logistics

� Stream processing engines inefficient for historic data

� Database systems not built for ephemeral data

Streams

?

� Complex stream analytics in a single system is hard



2

Motivation

� Stream data analytics is growing increasingly complex

� Streams are enriched and analyzed with historic data

� Business reporting
� Log monitoring
� Logistics

� Stream processing engines inefficient for historic data

� Database systems not built for ephemeral data

Streams

?

� Complex stream analytics in a single system is hard



3

Current Solutions

� Historic data in stream processing engines

� Read-only
� Optimized for filter-and-aggregate queries

� View-based stream processing

Ë Highly performant
� Requires fine-tuned and invasive integration

Γ 

σ

⇞

Stream

σ

⨝

Table

� Current solutions are complex to implement and integrate



3

Current Solutions

� Historic data in stream processing engines

� Read-only
� Optimized for filter-and-aggregate queries

� View-based stream processing

Ë Highly performant
� Requires fine-tuned and invasive integration

Γ 

σ

⇞

Stream

σ

⨝

Table

� Current solutions are complex to implement and integrate



3

Current Solutions

� Historic data in stream processing engines

� Read-only
� Optimized for filter-and-aggregate queries

� View-based stream processing

Ë Highly performant
� Requires fine-tuned and invasive integration

Γ 

σ

⇞

Stream

σ

⨝

Table

� Current solutions are complex to implement and integrate



4

Relation-Based Integration

� Relations are entry point for all data in a DBMS

� Database systems utilize physical data independence

Ë Masks remote data access
Ë Independence of storage formats, e.g., Parquet
Ë Optimized access paths for OLTP or OLAP

Ë New relation types transparent to other operators

� Streams are ephemeral in nature

� Scanned data is unknown at query start

Γ 

σ

⇞

Table

σ

⨝

Table



4

Relation-Based Integration

� Relations are entry point for all data in a DBMS

� Database systems utilize physical data independence

Ë Masks remote data access
Ë Independence of storage formats, e.g., Parquet
Ë Optimized access paths for OLTP or OLAP

Ë New relation types transparent to other operators

� Streams are ephemeral in nature

� Scanned data is unknown at query start

Γ 

σ

⇞

Table

σ

⨝

Table



4

Relation-Based Integration

� Relations are entry point for all data in a DBMS

� Database systems utilize physical data independence

Ë Masks remote data access
Ë Independence of storage formats, e.g., Parquet
Ë Optimized access paths for OLTP or OLAP

Ë New relation types transparent to other operators

� Streams are ephemeral in nature

� Scanned data is unknown at query start

Γ 

σ

⇞

Table

σ

⨝

Table

Streams

?



4

Relation-Based Integration

� Relations are entry point for all data in a DBMS

� Database systems utilize physical data independence

Ë Masks remote data access
Ë Independence of storage formats, e.g., Parquet
Ë Optimized access paths for OLTP or OLAP

Ë New relation types transparent to other operators

� Streams are ephemeral in nature

� Scanned data is unknown at query start

Γ 

σ

⇞

Table

σ

⨝

Table

Streams

?



5

Masking Unknown Scan Boundaries

� Scans rely on fixed set of accessed data, i.e. TIDs

� Stream data arrives during query processing

� Scan has to detect stream depletion

� Control messages would break SQL interface
Ë Detect stream depletion from metadata

�uery start

R
egular �

uery

� Queries with session-window semantics



5

Masking Unknown Scan Boundaries

� Scans rely on fixed set of accessed data, i.e. TIDs

� Stream data arrives during query processing

� Scan has to detect stream depletion

� Control messages would break SQL interface
Ë Detect stream depletion from metadata

�uery start

R
egular �

uery

δ

Stream �uery

� Queries with session-window semantics



5

Masking Unknown Scan Boundaries

� Scans rely on fixed set of accessed data, i.e. TIDs

� Stream data arrives during query processing

� Scan has to detect stream depletion

� Control messages would break SQL interface
Ë Detect stream depletion from metadata

�uery start

R
egular �

uery

δ

Stream �uery

� Queries with session-window semantics



5

Masking Unknown Scan Boundaries

� Scans rely on fixed set of accessed data, i.e. TIDs

� Stream data arrives during query processing

� Scan has to detect stream depletion

� Control messages would break SQL interface
Ë Detect stream depletion from metadata

�uery start

R
egular �

uery

δ

Stream �uery

� Queries with session-window semantics



6

Masking Data Ephemerality

� Scans rely on data to be fully and durably materialized

� Streams are too voluminous be materialized fully

� Scans have to deal with short-lived data

Ë Ring buffer provides required abstraction
� Requires careful overflow checks for variable-sized data

Γ 

σ

⇞

Stream

σ

⨝

Table

� Ring-buffered cache with overflow handling



6

Masking Data Ephemerality

� Scans rely on data to be fully and durably materialized

� Streams are too voluminous be materialized fully

� Scans have to deal with short-lived data

Ë Ring buffer provides required abstraction
� Requires careful overflow checks for variable-sized data

Γ 

σ

⇞

Stream

σ

⨝

Table

� Ring-buffered cache with overflow handling



6

Masking Data Ephemerality

� Scans rely on data to be fully and durably materialized

� Streams are too voluminous be materialized fully

� Scans have to deal with short-lived data

Ë Ring buffer provides required abstraction
� Requires careful overflow checks for variable-sized data

Γ 

σ

⇞

Stream

σ

⨝

Table

write head

read head

scan step

� Ring-buffered cache with overflow handling



6

Masking Data Ephemerality

� Scans rely on data to be fully and durably materialized

� Streams are too voluminous be materialized fully

� Scans have to deal with short-lived data

Ë Ring buffer provides required abstraction
� Requires careful overflow checks for variable-sized data

Γ 

σ

⇞

σ

⨝

Table

write head

read head

scan step

� Ring-buffered cache with overflow handling



7

Experimental Analysis - Analytical Performance

Query throughput with increasing thread count

S
M
T

0

40

80

120

2 4 8 16 28 32

# Threads

Q
u
er
ie
s/
h

Flink
Spark
Umbra

� TPC-H SF 100 where lineitem is treated as a stream

Ë Near-linear scaling to all physical cores

Ë 3× speedup over established stream processing engines



7

Experimental Analysis - Analytical Performance

Query throughput with increasing thread count

S
M
T

0

40

80

120

2 4 8 16 28 32

# Threads

Q
u
er
ie
s/
h

Flink
Spark
Umbra

� TPC-H SF 100 where lineitem is treated as a stream

Ë Near-linear scaling to all physical cores

Ë 3× speedup over established stream processing engines



8

Experimental Analysis - Query Overhead

Runtime overhead of attaching a query over data ingestion

1%
25%
50%
75%
99%

2.5×

5.0×

7.5×

10.0×

2 4 8 16 28 32

# Threads

O
ve
rh
ea
d

Approach Flink Spark Umbra

� Runtime difference of evaluating a query to parsing the data in each system

Ë Next to no overhead over insert processing

Ë Attaching multiple queries has no additional cost



8

Experimental Analysis - Query Overhead

Runtime overhead of attaching a query over data ingestion

1%
25%
50%
75%
99%

2.5×

5.0×

7.5×

10.0×

2 4 8 16 28 32

# Threads

O
ve
rh
ea
d

Approach Flink Spark Umbra

� Runtime difference of evaluating a query to parsing the data in each system

Ë Next to no overhead over insert processing

Ë Attaching multiple queries has no additional cost



9

Conclusion

� Relation-based stream processing

Ë Ring-buffered cache for ephemeral data
Ë Session-windowed semantics masks unknown stream bounds
Ë Minimally invasive, fully SQL-based integration
Ë Full functionality for historic data

Ë Higher ease of integration than view-based solutions

Ë More performant than stream processing engines

Γ 

σ

⇞

σ

⨝

Table

Thank you for your attention!



9

Conclusion

� Relation-based stream processing

Ë Ring-buffered cache for ephemeral data
Ë Session-windowed semantics masks unknown stream bounds
Ë Minimally invasive, fully SQL-based integration
Ë Full functionality for historic data

Ë Higher ease of integration than view-based solutions

Ë More performant than stream processing engines

Γ 

σ

⇞

σ

⨝

Table

Thank you for your attention!



9

Conclusion

� Relation-based stream processing

Ë Ring-buffered cache for ephemeral data
Ë Session-windowed semantics masks unknown stream bounds
Ë Minimally invasive, fully SQL-based integration
Ë Full functionality for historic data

Ë Higher ease of integration than view-based solutions

Ë More performant than stream processing engines

Γ 

σ

⇞

σ

⨝

Table

Thank you for your attention!


