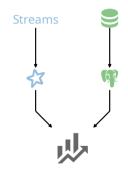


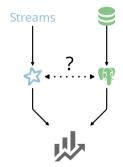
Relation-Based In-Database Stream Processing

Christian Winter, Thomas Neumann, Alfons Kemper

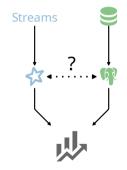
Technical University of Munich

CDMS @ VLDB 2023



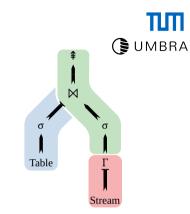


→ Stream data analytics is growing increasingly complex


- \clubsuit Stream data analytics is growing increasingly complex
- → Streams are enriched and analyzed with historic data
 - Business reporting
 - Log monitoring
 - Logistics

- \Rightarrow Stream data analytics is growing increasingly complex
- → Streams are enriched and analyzed with historic data
 - ➔ Business reporting
 - Log monitoring
 - Logistics
- ▲ Stream processing engines inefficient for historic data

- ➔ Stream data analytics is growing increasingly complex
- → Streams are enriched and analyzed with historic data
 - Business reporting
 - Log monitoring
 - Logistics
- 🛕 Stream processing engines inefficient for historic data
- 🛕 Database systems not built for ephemeral data

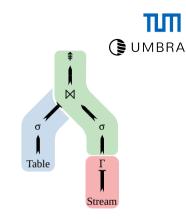


➔ Complex stream analytics in a single system is hard

Current Solutions

Historic data in stream processing engines
A Read-only

A Optimized for filter-and-aggregate queries

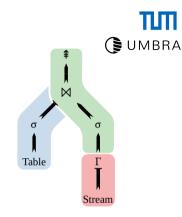

Current Solutions

Historic data in stream processing engines

🛕 Read-only

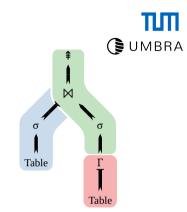
▲ Optimized for filter-and-aggregate queries

- ➔ View-based stream processing
 - ✓ Highly performant
 - A Requires fine-tuned and invasive integration

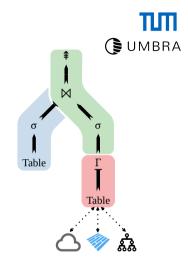

Current Solutions

➔ Historic data in stream processing engines

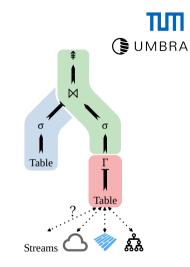
🛕 Read-only

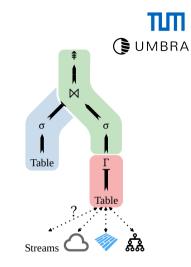

▲ Optimized for filter-and-aggregate queries

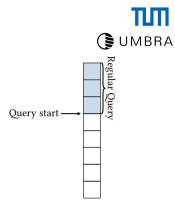
- View-based stream processing
 - Highly performant
 - A Requires fine-tuned and invasive integration

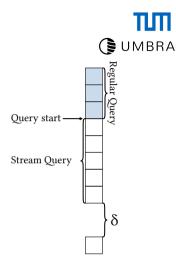


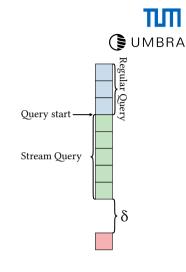
→ Current solutions are complex to implement and integrate


→ Relations are entry point for all data in a DBMS


- ➔ Relations are entry point for all data in a DBMS
- → Database systems utilize physical data independence
 - ✓ Masks remote data access
 - ✓ Independence of storage formats, e.g., Parquet
 - Optimized access paths for OLTP or OLAP

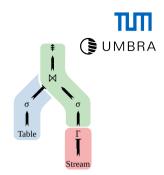

- ➔ Relations are entry point for all data in a DBMS
- ➔ Database systems utilize physical data independence
 - Masks remote data access
 - ✓ Independence of storage formats, e.g., Parquet
 - Optimized access paths for OLTP or OLAP
- \checkmark New relation types transparent to other operators


- ➔ Relations are entry point for all data in a DBMS
- ➔ Database systems utilize physical data independence
 - Masks remote data access
 - ✓ Independence of storage formats, e.g., Parquet
 - ✓ Optimized access paths for OLTP or OLAP
- ✓ New relation types transparent to other operators
- 🛕 Streams are ephemeral in nature
- 🛕 Scanned data is unknown at query start

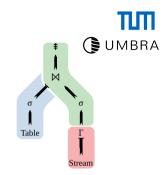

> Scans rely on fixed set of accessed data, i.e. TIDs

Scans rely on fixed set of accessed data, i.e. TIDs
A Stream data arrives during query processing

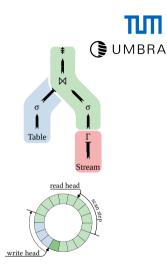
- ➔ Scans rely on fixed set of accessed data, i.e. TIDs
- 🛕 Stream data arrives during query processing
- ➔ Scan has to detect stream depletion
 - 🛕 Control messages would break SQL interface
 - Detect stream depletion from metadata

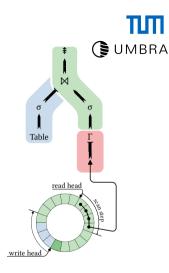

UMBRA egular Query Ouery start Stream Ouerv δ

➔ Scans rely on fixed set of accessed data, i.e. TIDs

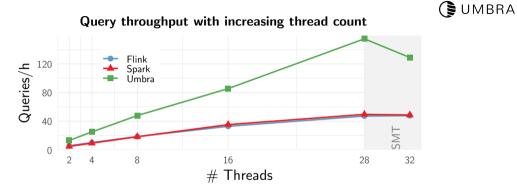

- 🛕 Stream data arrives during query processing
- ➔ Scan has to detect stream depletion
 - 🛕 Control messages would break SQL interface
 - Detect stream depletion from metadata

➔ Queries with session-window semantics


→ Scans rely on data to be fully and durably materialized

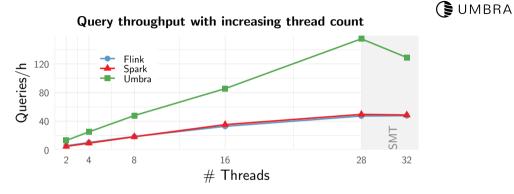

Scans rely on data to be fully and durably materialized
A Streams are too voluminous be materialized fully

- ➔ Scans rely on data to be fully and durably materialized
- A Streams are too voluminous be materialized fully
- ➔ Scans have to deal with short-lived data
 - ✓ Ring buffer provides required abstraction
 - A Requires careful overflow checks for variable-sized data



- ➔ Scans rely on data to be fully and durably materialized
- 🛕 Streams are too voluminous be materialized fully
- ➔ Scans have to deal with short-lived data
 - ✓ Ring buffer provides required abstraction
 - A Requires careful overflow checks for variable-sized data

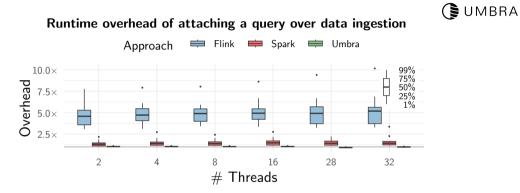
➔ Ring-buffered cache with overflow handling


Experimental Analysis - Analytical Performance

→ TPC-H SF 100 where lineitem is treated as a stream

٦Π

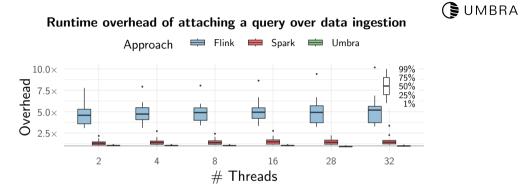
Experimental Analysis - Analytical Performance



→ TPC-H SF 100 where lineitem is treated as a stream

- ✓ Near-linear scaling to all physical cores
- \checkmark 3× speedup over established stream processing engines

ТΠ

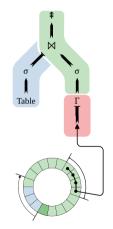

Experimental Analysis - Query Overhead

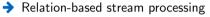
→ Runtime difference of evaluating a query to parsing the data in each system

пп

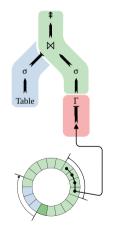
Experimental Analysis - Query Overhead

→ Runtime difference of evaluating a query to parsing the data in each system

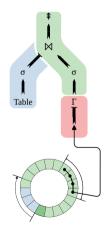

- ✓ Next to no overhead over insert processing
- ✓ Attaching multiple queries has no additional cost


Conclusion

UMBRA


➔ Relation-based stream processing

- ✓ Ring-buffered cache for ephemeral data
- Session-windowed semantics masks unknown stream bounds
- Minimally invasive, fully SQL-based integration
- ✓ Full functionality for historic data



- ✓ Ring-buffered cache for ephemeral data
- Session-windowed semantics masks unknown stream bounds
- Minimally invasive, fully SQL-based integration
- Full functionality for historic data
- ✓ Higher ease of integration than view-based solutions
- More performant than stream processing engines

- ➔ Relation-based stream processing
 - ✓ Ring-buffered cache for ephemeral data
 - Session-windowed semantics masks unknown stream bounds
 - Minimally invasive, fully SQL-based integration
 - Full functionality for historic data
- ✓ Higher ease of integration than view-based solutions
- More performant than stream processing engines

Thank you for your attention!