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Motivation

 Stream data analytics is growing increasingly complex

 Streams are enriched and analyzed with historic data

 Business reporting
 Log monitoring
 Logistics

 Stream processing engines inefficient for historic data

 Database systems not built for ephemeral data

Streams

 Complex stream analytics in a single system is hard
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Current Solutions

 Historic data in stream processing engines

 Read-only
 Optimized for filter-and-aggregate queries

 View-based stream processing

Ë Highly performant
 Requires fine-tuned and invasive integration
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Relation-Based Integration

 Relations are entry point for all data in a DBMS

 Database systems utilize physical data independence

Ë Masks remote data access
Ë Independence of storage formats, e.g., Parquet
Ë Optimized access paths for OLTP or OLAP

Ë New relation types transparent to other operators

 Streams are ephemeral in nature

 Scanned data is unknown at query start
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Masking Unknown Scan Boundaries

 Scans rely on fixed set of accessed data, i.e. TIDs

 Stream data arrives during query processing

 Scan has to detect stream depletion

 Control messages would break SQL interface
Ë Detect stream depletion from metadata

�uery start

R
egular �

uery

 Queries with session-window semantics
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Masking Data Ephemerality

 Scans rely on data to be fully and durably materialized

 Streams are too voluminous be materialized fully

 Scans have to deal with short-lived data

Ë Ring buffer provides required abstraction
 Requires careful overflow checks for variable-sized data
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Experimental Analysis - Analytical Performance

Query throughput with increasing thread count
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Ë Near-linear scaling to all physical cores

Ë 3× speedup over established stream processing engines
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Experimental Analysis - Query Overhead

Runtime overhead of attaching a query over data ingestion
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 Runtime difference of evaluating a query to parsing the data in each system

Ë Next to no overhead over insert processing

Ë Attaching multiple queries has no additional cost
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Conclusion

 Relation-based stream processing

Ë Ring-buffered cache for ephemeral data
Ë Session-windowed semantics masks unknown stream bounds
Ë Minimally invasive, fully SQL-based integration
Ë Full functionality for historic data

Ë Higher ease of integration than view-based solutions

Ë More performant than stream processing engines
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