
Towards Efficient and Secure UDF Execution
 with BabelfishLib

Philipp M. Grulich
Technische Universität Berlin

1

How much profit do we earn per user?

Selection
(distance(t)>0.5)

Scan
(trips)

GroupBy
(user_id)

Sum
(tripPofit(t))

Polyglot query in a bike sharing company:

Motivation

2

Polyglot Queries combine relational operations
with user-defined functions in different
programming languages.

Overhead of TPC-H Query 6 with Python UDF on different systems.

Polyglot Queries cause a significant overhead on commercial and open source
data processing systems.

3

Limitations of state-of-the-art Systems

Limitations of state-of-the-art Systems

Selection
(distance(t)>0.5)

Scan
(trips)

GroupBy
(user_id)

UDF
Runtime

Native Environment

UDF Environment

Runtime Invocation

Data Exchange

Data Conversion

4

Limitations of state-of-the-art Systems

Selection
(distance(t)>0.5)

Scan
(trips)

GroupBy
(user_id)

UDF
Runtime

Native Environment

UDF Environment

Runtime Invocation

Data Exchange

Data Conversion

5

Is this not already solved?

6

Logical Optimizations: Hueske et al. [VLDB 12], Venkatesh et al. [SIGMOD 16], Froid
[VLDB 17], Aggify [SIGMOD 22], Duta et al. [CIDR 19, SIGMOD 20], Grizzly [CIDR 19],
Haralampos et al. [SIGMOD 23]

Execution Strategies: Raasveldt et al. [SSDBM 16], Rosenfeld et al. [SoCC 17], Schüle
et al. [SSDBM 19], Sichert et al. [VLDB 22]

Execution Engines: Trill [VLDB 14], Tupleware [VLDB 15], Gerenuk [SOSP 19], Tuplex
[VLDB 21], Magpie [CIDR 21], YeSQL [VLDB 22], Babelfish [VLDB 22]

Several approaches tackle the problem.
Require significant amount of engineering.

Let's take a step back!

7

Could we provide efficient UDF execution as a library?

7

Goals for a UDF Accelerator

Support Logical
Optimizations

Ensure Isolation
and Security

Provide High
Performance

Translate UDFs to relation expressions.
Infer interesting-properties.
Enable cost-based optimizations.

Avoid data copies.
Integrate optimized language runtimes.
Specialize execution across operator boundaries

Isolation of different execution contexts.
Containerize faulty and malicious UDFs.

Towards BabelfishLib

9

BabelfishLib:

● Efficient execution of polyglot queries.
● Supporting logical optimizations.
● Ensuring isolation and secure execution.

Open Questions:

● Which logical optimizations are most beneficial?
● How to ensure portability across different systems?
● How to materialize intermediate data?
● Which level of isolation is required?

https://nebula.stream

