Towards Efficient and Secure UDF Execution
with BabelfishlLib

Philipp M. Grulich

Technische Universitat Berlin

Motivation

Polyglot Queries combine relational operations
with user-defined functions in different
programming languages.

Polyglot query in a bike sharing company:

How much profit do we earn per user? ,

. 'g'/ s i
Scan || Selection [GroupBy Sum
(trips) (distance(t)>0.5) (user_id) (tripPofit(t))

-- SQL Query --

SELECT sum(tripProfit(t))

FROM trips t

WHERE distance(t.start, t.end) > 0.5
GROUP BY t.user_id

Python distance function
from haversine import haversine, Unit
def distance(start, end):
return haversine(start, end, Unit.KILOMETERS).

// JavaScript profit function
function tripProfit(t){
let price;
if (t.date.before("2020-01-01")){
price = t.duration * 0.5;
} else {
price = distance(t.start, t.end) * 0.3;

}

return t.hasVoucher 7 price * -1: price;

Limitations of state-of-the-art Systems

B Python UDF @ sQL
_ =
s o) — T 3.6x |
Z 0 1% /7 58x 7
2 1E N 2 l 7 / =
Lf 1
T o001l % %/ % %A %/ 3

MonetDB Postgres DBX DBY Spark Flink Typer
Overhead of TPC-H Query 6 with Python UDF on different systems.

Polyglot Queries cause a significant overhead on commercial and open source
data processing systems.

Limitations of state-of-the-art Systems

Scan p» | Selection p» | GroupBy
(trips) (distance(t)>0.5) (user_id)

¥ Runtime Invocation

Native Environment ¥ Data Exchange

UDF Environment ¥ Data Conversion

UDF
Runtime

Limitations of state-of-the-art Systems

SAvojy; Selection 5
Svoiding T

APache Spary

“,\\. MVocation

00
Native Environment

UDF Environment

VVhy SQL Ser\/e'r ‘Sgé\mmrsion

Data Exchange

ar Unctions are bag»

UDF
Runtime

Is this not already solved?

Logical Optimizations: Hueske et al. [VLDB 12], Venkatesh et al. [SIGMOD 16], Froid
[VLDB 17], Aggify [SIGMOD 22], Duta et al. [CIDR 19, SIGMOD 20], Grizzly [CIDR 19],
Haralampos et al. [SIGMOD 23]

Execution Strategies: Raasveldt et al. [SSDBM 16], Rosenfeld et al. [SoCC 17], Schiile
et al. [SSDBM 19], Sichert et al. [VLDB 22]

Execution Engines: Trill [VLDB 14], Tupleware [VLDB 15], Gerenuk [SOSP 19], Tuplex
[VLDB 21], Magpie [CIDR 21], YeSQL [VLDB 22], Babelfish [VLDB 22]

Several approaches tackle the problem.
Require significant amount of engineering.

Let's take a step back!

Could we provide efficient UDF execution as a library?

Goals for a UDF Accelerator

rTranslate UDFs to relation expressions. A

Infer interesting-properties. Support Logical
\Enable cost-based optimizations.) Optimizations
rAvoid data copies.)

Integrate optimized language runtimes.
kSpecialize execution across operator boundaries)

Provide High Ensure Isolation
Performance and Security

Isolation of different execution contexts.
Containerize faulty and malicious UDFs.

Towards BabelfishlLib

BabelfishlLib:

e Efficient execution of polyglot queries.
® Supporting logical optimizations.
e Ensuring isolation and secure execution.

Open Questions:

Which logical optimizations are most beneficial?
How to ensure portability across different systems?
How to materialize intermediate data?

Which level of isolation is required?

OO0

Ml °° 'I 'l 150
[.
' ||oo' . ® ool
Il.)

é' il :. |"'!°|I'

Bys,!
https://nebula.stream

