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Motivation

Polyglot Queries combine relational operations
with user-defined functions in different
programming languages.

Polyglot query in a bike sharing company:

How much profit do we earn per user? ,
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Scan || Selection [ GroupBy Sum
(trips) (distance(t)>0.5) (user_id) (tripPofit(t))

-- SQL Query --

SELECT sum(tripProfit(t))

FROM trips t

WHERE distance(t.start, t.end) > 0.5
GROUP BY t.user_id

# Python distance function
from haversine import haversine, Unit
def distance(start, end):
return haversine(start, end, Unit.KILOMETERS).

// JavaScript profit function
function tripProfit(t){
let price;
if (t.date.before("2020-01-01")){
price = t.duration * 0.5;
} else {
price = distance(t.start, t.end) * 0.3;

}

return t.hasVoucher 7 price * -1: price;



Limitations of state-of-the-art Systems
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Polyglot Queries cause a significant overhead on commercial and open source
data processing systems.
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Is this not already solved?

Logical Optimizations: Hueske et al. [VLDB 12], Venkatesh et al. [SIGMOD 16], Froid
[VLDB 17], Aggify [SIGMOD 22], Duta et al. [CIDR 19, SIGMOD 20], Grizzly [CIDR 19],
Haralampos et al. [SIGMOD 23]

Execution Strategies: Raasveldt et al. [SSDBM 16], Rosenfeld et al. [SoCC 17], Schiile
et al. [SSDBM 19], Sichert et al. [VLDB 22]

Execution Engines: Trill [VLDB 14], Tupleware [VLDB 15], Gerenuk [SOSP 19], Tuplex
[VLDB 21], Magpie [CIDR 21], YeSQL [VLDB 22], Babelfish [VLDB 22]

Several approaches tackle the problem.
Require significant amount of engineering.




Let's take a step back!

Could we provide efficient UDF execution as a library?



Goals for a UDF Accelerator

rTranslate UDFs to relation expressions. A

Infer interesting-properties. Support Logical
\Enable cost-based optimizations. ) Optimizations
rAvoid data copies. )

Integrate optimized language runtimes.
kSpecialize execution across operator boundaries )

Provide High Ensure Isolation
Performance and Security

Isolation of different execution contexts.
Containerize faulty and malicious UDFs.




Towards BabelfishlLib

BabelfishlLib:

e Efficient execution of polyglot queries.
® Supporting logical optimizations.
e Ensuring isolation and secure execution.

Open Questions:

Which logical optimizations are most beneficial?
How to ensure portability across different systems?
How to materialize intermediate data?

Which level of isolation is required?
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