Taking Postgres
to the 21st Century

Database Should Just Be a URL

Nikita Shagmunov bio

SQL Server 2005-2010
- XML, Geo Spatial, .NET, Typesystem
Singlestore 2011 - 2020

- Founder CTO
- Then CEO

Neon 2021 - now

- Founder CEO

Why Database Should Just be a URL?

Developer Experience

- Instant everything

- Tune nothing

- Branching

- Consumption based pricing

Shareability

- Share a URL
- Publish to the web

Access from anywhere

- Datacenter
- Edge
- Browser

Postgres Early days

Postgres left Berkeley in 1996
Foundation was already there:

- Extendable types and functions

- SQL support, cost-based optimizer

- Multiple index AMs: b-tree, hash

- Storage manager interface, md.c and mm.c

&

- In database early design decisions stay for a LONG time

PostgreSQL Storage History

1990-2000: MVCC, VACUUM, extendable index types

2001: WAL, TOAST (blob store)
2005: Subtransactions, online backup, PITR, tablespaces
2010: pg_upgrade, streaming replication, hot standby

2013: FDWs
2017: Logical replication
2018: Partitioning, JIT compilation

Storage Architecture

By 2010-2015, Postgres arrived at a “traditional” storage architecture:

- Page based system. No redo log

- Primary and 1-2 hot standbys

- Streaming replication

- Scripting to manage the cluster, e.g. Patroni
- Backups and WAL archiving to cloud storage

Where is Postgres now?

@
=
U
a

&
£

&=

=
o
o

=)
[
e
o
o
)

DB-Engines Ranking

August 2023

Oracle

— MySQL
Microsoft SQL Server
PostgreSQL

- MongoDB

The Arrival of the Cloud

1st generation cloud architecture

Lift and shift:

Servers to cloud instances

Data is stored on expensive EBS volumes
Fast io achieved by provisioned IOPs
Backups to cloud storage

2nd Generation Cloud Architecture (AWS Aurora)

Separation of storage and compute

- Write 6 copies across 3 AZs
- Use gossip protocol for persistence

AWS Aurora Wins Sigmod Systems Award

SIGMOD AWARDS

The Aurora Database
System

2019 SIGMOD Systems Award
Amazon Aurora

3rd Generation Cloud Architecture

Built from the ground up in Rust. Open source
with Apache 2.0 license

- Safekeepers + S3 is the source of truth

- Pageserver is a persistent cache
- Get access any page by (page_id, Isn, a5
tenant_id)

COMPUTES

Benefits:

- Immediate startup of a new compute node
- No WAL replay o
- No checkpointing

- Immediate start of the read replica
- At any point-in-time (LSN)
- Branching

Safekeeper

STORAGE

Pageserver

WAL stream

WAL
Safekeeper Safekeeper

Object
storage

Storage

Safekeepers

- Simplified Paxos protocol

- Immediately asynchronous stream to S3

- Stream WAL to page servers and read
replica

Benefits:

- System of record is safekeepers and S3

- Full region catastrophic failure allows to
recover from s3

- Read replicas are instant

COMPUTES

R/W

R/O

Safekeeper

STORAGE

Pageserver

WAL stream Object
storage

WAL
Safekeeper Safekeeper

Storage

Pageservers

- Data is organized in “temporal” LSM trees
- Supports GetPage@LSN access method
- Support LSM layer offload to S3

Benefits:

- Enables time machine and branching
- Cost effective due to memory hierarchy
- Constant battle with write amplification

COMPUTES

R/W

R/O

Safekeeper

STORAGE

Pageserver

WAL stream

WAL
Safekeeper Safekeeper

Object
storage

Storage

Pageservers

- Data is organized in “temporal” LSM trees
- Supports GetPage@LSN access method
- Support LSM layer offload to S3

Benefits:

- Enables time machine and branching
- Cost effective due to memory hierarchy
- Constant battle with write amplification

COMPUTES

R/W

R/O

Safekeeper

STORAGE

Pageserver

WAL stream

WAL
Safekeeper Safekeeper

Object
storage

Serverless Goals (database is a URL)

Automatic scaling

- Down to zero

- Up to max host size
Plus read replicas
Across the globe

Challenges

- Replication lag between read replicas
- Cache coherency across read replicas

- Multi-master implementation to scale out writes
Need to row based WAL for multi-master

Scaling compute. General Architecture

Each compute is a VM.

- QEMU+kvm with actual
CPU+memory hotplug

COMPUTES

R/W

Using k8s as our orchestration layer

- We build NeonVM - k8s support
for VMs + custom scheduler i

All code in the open sourced and we
develop in the open

Safekeeper

STORAGE

Pageserver

WAL stream

WAL
Safekeeper Safekeeper

Object

storage

Scaling VMs Within One Host

- Using CPU and memory hotplug - building on the shoulders of giants

o We'll scale you down, too!

- Scaling decisions use load average & memory usage

- Inside the VM, react to cgroup v2 memory pressure notifications
o Faster reactions than we could ever get with polling

- Custom resizable postgres cache
o 1MB chunk size so static overhead is small

Scaling computes: Rebalancing with live migrations

Allows moving VMs between physical hosts without restart:

- Copy disk + memory, pause, copy CPU states, resume on the new host
- Minimal (100ms) interruption during hand-off

Prioritizes smaller & less active computes

- Even with scale-to-zero and autoscaling, people pay for mostly-idle DBs
- Migrations limited by network speed — smaller is faster

Easier instance scale-down / decommissioning K8s nodes

- No need to restart DBs
- Better uptime for users, easier to manage for us

Not all easy: Disk usage is harder to manage

- Can’t scale while migrating
- Disk usage means more data to move - migration takes longer

Scaling computes: K8s customizations

Represent VMs as a custom resource (CRD) in k8s:
- NeonVM is our abstraction layer
Custom k8s scheduler via plugins framework:

- Knows about VMs, active rebalancing between nodes
- Approves scaling requests to avoid overcommitting memory (OOM is not
good!)

Everything needs to know about VMs

- Also modified cluster-autoscaler

Scaling computes: The hard parts

We’'re hitting uncommon code paths:

- Issues with scaling failures and OOMs
- Kernel panics due to tmpfs usage

Uncomfortable trade-offs:

- Disk scaling is hard to implement but valuable for caching
- Sometimes unavoidable — postgres spills to disk

Key postgres settings aren’t built to dynamically scale:

- Built our own shared_buffers replacement because overhead from hashmap was too big
o Caching is critical because fetching from storage is over the network

Tons of integration work needed to polish things:

- Index building
- Query planning

PostgreSQL connection scaling

A connection has a lot of state:

- Cursors, prepared statements, temporary tables, per-connection settings, metadata caches etc.
- Max # of connections is fixed at startup
- Memory management: fixed size areas for buffer pool and other things

These problems are exacerbated when you try to scale on the fly
- Switching from multi-process to multi-threaded architecture would help
Traditional solution is to use a connection pool:

- Helps with connections scaling
- Doesn’t address scaling memory
- Breaks lots of connection state

What is a connection anyway?

import { neon } from '@neondatabase/serverless';
const sql = neon(process.env.DATABASE_URL);

const [post] = await sql SELECT % FROM posts WHERE id = ${postId}";
// “post’ is now { id: 12, title: 'My post', ... } (or undefined)

People building new stateless applications don’t think that way

- A connection pool? A cursor? What is that?
- Database is just a URL

Serverless driver

- Access to the database over HTTP
- No need to establish a connection

Postgres extendabillity

1995: B-tree, hash

1996: GIiST: r-tree

2001: Postgis

2006: GIN: generalized inverted index, full text search
2014: jsonb, indexing

2015: BRIN: block range indexes

2019: Table access method interface

2021+: 777

2021: Vector embeddings

Supporting vectors
- Array data type is already there
Supporting KNN (k-nearest neighbour)
- Already there with full table scan
Supporting indexing for fast ANN

- Pgvector and pg_embedding
- IVFFlat and HNSW indexes

Future

- Sparse vectors
- Quantization
- Vamana indexes

What’s Next

Don’t bet against Postgres
Serverless will come to all platforms
Threaded model

- Better runs on windows
- Better parallel execution
- Easier to autoscale

No More Vacuum?
Postgres platform

- Extension package manager. We need something like NPM. Potentially http://pgt.dev

http://pgt.dev

Thank you!

@neondatabase
@nikitabase
nikita@neon.tech

