MotherDuck

Hybrid Query EXxecution

What 1s a Database Client, Anyway?

Jordan Tigani
co-founder & chief duck-herder @MotherDuck
2023-08-28

WHO AM I?

« MotherDuck Co-Founder

« MemSQL/SingleStore CPO

» BigQuery PM/Eng Director

» BigQuery Storage Tech Lead
* Mlcrosoft Research

MotherDuck

Photo above: Prophesying the end of Big Data.

About this talk

Opinionated History of Cloud Data
Warehouses and Data Lakes

What is Hybrid Execution and why would you
want to use it?

How does Hybrid Execution work?

What are some new things to try?

Telling stories with diagrams like the one above

How did we get here?

The rise of the Cloud Data Warehouse

Rise

of the CDW:

Local Disks

foo.db

foo.wal

Row Stores

ABC

1 2.5

DEF

2 1.0

GHI

3 9.8

Shared Nothing

CPU

MEM

4 N\
CPU

MEM

4 N\
CPU

MEM

Ve
CPU

Object Stores

—

foo
t=1

t=2

Column Stores

ABC 1 2.5
DEF 2 1.0
GHI 3 9.9

Shared Disk

It’s all about the storage

G J

<
m
<

= |

| cpu |
| MEM |

| cpu |
| MEM |

CPU

MEM

I

CPU
MEM

—

DISK

—]

Important features for CDW Storage

e File Management CDW

o Problem: Performance degrades over time
o Solution: Background Compaction & Coalesce

e Metadata Management
o Problem: Need atomic updates
o Solution: Metadata points to latest data objects

Meta DB

e Streaming buffers (et) [eat | [et | [tear |
o Problem: Column stores aren’t great at frequent
updates

o Solution: Buffer recent data in a rowstore / log

e Storage Pushdown Efj [ompasos |

o Problem: Reading too much data is slow /

expensive
o Solution: Segment-level storage statistics ~ Coalesce

Meanwhille ..
In a Parallel Universe
Opening up the Data

Why don’t we drop our data in a lake?

Data Lake Architecture
Data Lakes are Great!

Query Engine
e Open data formats [— } [U } [| U q [| U q
e Write once, figure out out later — ey Tven | | | [vew]
e Infinitely Scalable N 7
e Inexpensive W
But... Data Lakes are Terrible! C 7 —]
e Data Swamps Object Store
e No governance
e Do we still need this file?
e Mediocre Performance

Comparing Data Lake problems to CDW

File Management CDW
o Problem: Performance degrades over time
o Solution: ???

Metadata Management
o Problem: Need atomic updates
o Solution: ???

Streaming buffers

Leaf Leaf Leaf Leaf

o Problem: Column stores aren’t great at frequent updates
o Solution: ???
Storage Pushdown
o Problem: Reading too much data is slow / expensive
o Solution: ??? i Object Store j

—

Enter the Lake House

File Management

o Problem: Performance degrades over time

o Solution: Compact-on-write or Compact-on-read
Metadata Management

o Problem: Need atomic updates

o Solution: Metadata files stored in object stores
Streaming buffers

o Problem: Column stores aren’t great at frequent updates

o Solution: You didn’t really want fresh data did you?
Storage Pushdown

o Problem: Reading too much data is slow / expensive
o Solution: Metadata files have extent information

Query Engine

Leaf] [Leaf]

|
) (o) (o)
\ ,

Leaf

—

\ /

NV

—’E Object Store j

Storage Layer

Evolution of the Lake House

File Management Query Engine

o Problem: Merging slows down access

o Solution: Create coalesce service
Metadata Management

o Problem: Need fine grained auth [Leaf] [Leaf] [Leaf]
o Solution: Proxy data [] [] []
. Client Client Client
Streaming buffers < hl d
o Problem: Object store writes are slow /
o Solution: Streaming service /
Storage Pushdown
o Problem: Want better segment elimination [Expression Eval] Proxy

o Solution: Metadata service w/ Expression Evaluator

y
Object Store

Storage Layer

Meta DB

l)‘

Lakehouses Evolve Into CDWws

Interface: Tables > Files

Metadata: DB > Object Store [Boessenza | [Exouton |
Coalesce: Background > Foreground ~
5 Obec Store
Access: Managed > Cooperative - e
W Coalesce
[Expression Eval Proxy

Object Store ~
Meta DB Coalesce

Lake House

If your Data Lake becomes a Data Warehouse,
What do you do with the query engine?

Query Engine CDW

Hybrid Execution!

Why Hybrid?

Local Result Cache

Low Latency local queries

Reactive User Experiences

Web Ul

Query

Engine

WASM

Materialized
Views

Local Storage

CDW

Data Science without Borders

Mix Local and Remote data seamlessly

Local Pandas Dataframe Remote Database Table

SQL5

Dataframes v [/ <[> SQLXQCS [

1 SELECT COUNT(*) from peak_hours, tpch.nation

Displaying up to 10 rows (preview)

count_star()

0 4200

> dataframe_4

Local Sub-Sampling

Client
Query
Engine
ABC 1 2.5
GHI 3 9.9

Local Storage

CDW
ABC 1 2.5
DEF 2 1.0
GHI 3 9.9
JKL 4 2.1
MNO 5 5.6

Reduce costs of running server-side

“Reasonable” size data can be run entirely client side

Client Side Decryption

Client

Query
Engine

Key

“Select f1, SUM(fe)” downloaded to client
“Select 1, f2” runs on server

CDW
Query
Engine
f1 f2 f3 fe
ABC 1 2.5 e6f6
DEF 2 1.0 854d
GHI 3 9.9 854d

Local Storage

Building Hybrid
Execution

One Duck at a Time

Embedded Database Execution w/ DuckDB

Typical Database Execution

|

Application W

driver

)

results!

a

Server

DuckDB Execution

/ Application \

a

SQL

-

A\
DuckDB

iiiii

/

Database Execution 101

a D
Cm

parse
parses SQL Query

a D
Cm

bind
matches tables & schemas
generates logical plan

) Logical
4 Plan

optimize
applies series of rules to
optimize plan

Physical
Plan

;i

execute
runs the query to get results

Embedded Database Execution w/ DuckDB (II)

Typical Database Execution

Application

|

Server

(—

driver

results! [«

SQL

parse

Y

bind

!

optimize

'

execute

I

DuckDB Execution

Application

DuckDB

SQL parse

. E

bind
|

optimize
Y
results! [« execute |«

data

Naive Hybrid 1: Forward immediately

N

[[=]
I —

Extension / / \\
SQL
arse arse B Exec > arse
P P Server P
v
bind bind B catalog
optimize optimize
v
execute E‘%ﬂ‘f E%E]f—‘ execute |« data

Naive Hybrid 2: Handling Local

[[=]

()

parse |

y

catalog
+ cache

bind |

optimize

> execute

> parse

— bind

-/

&

Extension

Data

~

~

> ik arse
Server P
]
.| Catalog il
| Server
J SQL E l
Xxec L
optimize
Server pamiz
Y
execute |«

@j:

catalog

-

)

data

=
-

Full Hybrid: Handling Blended Data

[[=]

()

parse |
y
bind —

catalog
+ cache

Extension

~

DCL

> parse

— bind

Server

.| Catalog

optimize

optimize

Plan

Server

Exec

execute

> execute

&

-/

__/

| Server

@j:

~

)

parse

\
bind

!

L+ optimize

'

catalog

execute |«

-)

data

=
-

Python Shell

DuckDB

MotherDuck |
extension

oca
database

E.qg. laptop running
Jupyter Notebook

e
observability

Monitoring

[duckling o)(duckiing o)
duckli
N -) u]

[Host service] [Storage Serwce]

Web Browser
DuckDB-wasm

MotherDuck] || .~
extension

MotherDuck GUI: Notebooks, SQL
IDE & Interactive Results Explorer

Client Layer ‘

Service Layer

Cloud Storage

3y
users, secrets
databases, ..

o [duckllng u]
. 2| | container
uckling o
1 (%)
container 2 duckllng u
3 container

Differential
DuckDB
database
storage

) O

Compute Layer

‘ Storage Layer

MotherDuck and the Very Hybrid Architecture

Hybrid Query Optimization

1. Build “Pipelines” of operators

2. Pipelines terminating in local source run locally

3. Pipelines terminating in remote source run
remotely

4. Insert bridges at pipeline sinks

5. If bridges transition local to remote or remote
to local, add upload / download

6. Add “costs” of data movement to the bridge to
determine whether to upload or download

select *
from T,S,R
where T.id=S.id AND S.id=R.id

Hybrid Query Plans: All Tables Local

HASH_GROUP_BY (L)

““““““ SELECT n_name, count(*)

#0
count_star() FROM CUStOmer, nation

WHERE c_nationkey = n_nationkey
_____ name GROUP BY n_name;

PROJECTION (L)

INNER
c_nationkey = n_nationkey
EC: 15000
Cost: 15000
I
SEQ_SCAN (L) SEQ_SCAN (L)
customer nation
c_nationkey n_nationkey
——————————— n_name
EC: 15600 || ——-——-—-—-—-—-—-—-—--
EC: 25

Hybrid Query Plans: All Tables Remote

DOWNLOAD_SOURCE (L)

, SELECT n_name, count(*)

DOWNLOAD_SINK (R) .
FROM customer, nation

parallel: true

WHERE c_nationkey = n_nationkey
e GROUP BY n_name;

count_star()

HASH_GROUP_BY (R)

PROJECTION (R)

INNER
c_nationkey = n_nationkey
EC: 15000
Cost: 15000
I
SEQ_SCAN (R) SEQ_SCAN (R)
customer nation
c_nationkey n_nationkey
——————————— n_name
EC: 15600 || ———=—-——=————— -
EC: 25

Hybrid Query Plans: Small Local Table

SELECT n_name, count(*)

DOWNLOAD_SOURCE (L)

FROM customer, local.nation

DOWNLOAD_SINK (R)

WHERE c_nationkey = n_nationkey

| GROUP BY n_name;

HASH_GROUP_BY (R)

PROJECTION (R)
n_name

HASH_JOIN (R) INNER
EC: 15000

Cost: 15000
I
SEQ_SCAN (R) UPLOAD_SOURCE (R)
customer T
c_nationkey !
EC: 15000 UPLOAD_SINK (L)

SEQ_SCAN (L)
nation
n_nationkey
n_name
EC: 25

Hybrid Query Plans: Small Remote Table

SELECT n_name, count(*)

i SHEROIE_BY (L) FROM local.customer, nation

WHERE c_nationkey = n_nationkey
GROUP BY n_name;

PROJECTION (L)

HASH_JOIN (L) INNER

c_nationkey = n_nationkey
EC: 15000
Cost: 15000
I
SEQ_SCAN (L) DOWNLOAD_SOURCE (L)
customer bridge_id: 1

EC: 15000

BATCH_DOWNLOAD_SINK (R)

SEQ_SCAN (R)
nation
n_nationkey
n_name
EC: 25

Exploring Hybrid
Topologies
Future Work

Parallel Scans

Client

Server

Query
Engine

Server

Query
Engine

Query
Engine

Server

Query
Engine

Object Store

Note similarity to Aggregators
& leaves in CDW

Edge Cache

Local Region/ PoP | ! Central Region |
Client Server o Server |
Query : Query —— | quen owases] |
Engine Engine Engine

| Cache can be recent data,
sampled data, or
region-fenced data

Cross-Region Joins o 5

Region 1 |

i Server i

| S—

Query _Obeser ||

Engine

Client Server
Query Query

Engine Engine o .

Region 2

Server |

— 00O
Query ([othasen]|

Engine

Reverse the polarity

Admin

Client

Query
Engine

—
Local DB

Server

Client

Query
Engine

Query
Engine

Query
Engine

Local DB

Client

Query
Engine

—
Local DB

“Find Security Threats”
Minimize Egress

Conclusion

Summary

Data Lakes becoming Data Warehouses
Query Engine + DW = Hybrid
Hybrid is useful in a bunch of different ways

Plenty of ways to push these ideas further

Thank you!

