
Horizons of Composability
Orri Erling

Software Engineer, Meta

The Present: Composable Execution is for real

● Velox accelerates Presto, Spark, Streaming and AI preproc
● A shared ABI for compute? Heterogeneous hardware?
● Language convergence, query optimization?

The Proposition, Again

● Build/maintain once for fast query everywhere
● Enable faster turnaround in building specialized solutions
● One place to optimize for new hardware
● Higher quality through more participants and more use cases
● Greater consistency of user experience between systems

Wins with Velox

● State of the art implementation of vectorized query operators
● Interactive

○ Faster and more consistent service with 1/3 of the equipment vs Java Presto
● Batch

○ 3x throughput on same cluster size
● Wins in Spark/Gluten

○ ~2.5x in TPC Benchmarks

Experience

● Industry-wide interest in composability
● Converging Presto, Spark, Streaming is possible
● Biggest divergence in built-in functions
● Proven wins in performance
● Standards, and now commoditization via open source, keep winning

Unifying?

● Back end is great, scans, joins, groupBys are the same
● Functions, everybody has their own
● Front end is harder, users are married to language/dialect
● Asks on query optimization are not as in the benchmarks

The Ongoing Inflection

● AI becomes the prime consumer, data keeps getting bigger
● Data is cheap and plentiful
● Data is 3% of world power bill
● Green data relies on efficiency gains, which rely on hardware evolution

Generations of Architecture

● General purpose CPUs have hit diminishing returns
● GPUs keep making new wins
● FPGAs could beat generic GPUs on power efficiency and cost
● If GPU is the consumer, then might as well manage data on it. Simpler data centers, fewer

SKUs

Velox Futures

● Velox Wave for accelerators
● Verax for query optimization
● File formats for workload evolution

Wave

● 10+ years of data on GPU - Promising but inconclusive
● CPUs like tens of threads, GPUs need 1000x more
● Parallelism is plentiful, but it hides under abstraction
● Expose it!

Performance is locality * parallelism

● Data level = many files
● Pipeline = Many operators and many columns
● Vectorization = many rows
● Instructions = many loads
● SIMT - Many executable warps / SM

GPU vs CPU

● Best case is ratio of memory throughput, 8-15x
● Best case only possible with 100K active lanes
● Executable plan is dataflow DAG, as many steps as the longest path length
● Each step has all the compute whose prerequisites exist

Wave

● Detect suitable plans at run time
● Dataflow decomposition and fusion of operators
● Run a few splits (files) at a time, like on CPU, except every step of every file has 10K

runnable SIMT lanes all the time
● So, ~100K runnable lanes across 10K Cuda cores makes for good platform utilization

Summertime Forever

● TPCH Q1
● Run the filter

○ decode the columns
● compute hash numbers and expressions

○ Group by

Getting Real

● Most workload is complex types, aggregates over arrays and maps
● It is either independent lanes all the way through or shuffled lanes to align with group by

groups
● approx_percentile, set_union, map_union

Verax

● Query optimization: 500K - 1M lines, 1000 engineer years?
● Not again.
● Can we do the benchmarks in 15K lines and the real workloads in 25K?

Fundamentals, Can we get them right?
● Query graph
● It's not random rewrites of trees
● It is modeling the dependencies accurately, incl. non-inner join edges
● Spanning tree of join , allow for some nodes being included many times

Model Real Costs

● Run cost model on what you plan to execute
● Not just join cardinality but data movement too
● Want to know the future? Study history. Workloads repeat all the time
● Sampling and history from the get go

Extensibility and New Tricks
● AI, wide data need smart late materialization
● Maybe non-SQL plans, like multi-table materializations and graph analytics/training (BSP)
● Pluggability of new operators/data layouts into candidate generation
● Open for ML directed candidate generation

File Formats
● Wide

○ AI, wide data need smart late materialization
○ Maybe non-SQL plans, like multi-table materializations and graph analytics/training

(BSP)
○ Pluggability of new operators/data layouts into candidate generation
○ Open for ML directed candidate generation

● Mutable
○ Privacy drives point updates to warehouse/training
○ Schema never constant
○ Semantic fidelity would like stable identifiers

File Formats (Contd.)
● Parallel

○ SIMD, GPU need formats with no data dependencies
○ Parquet/ORC encodings are a non-fit
○ Metadata is 1/3 of volume, needs random access for metadata

● Random
○ Will instance optimization/adaptivity rediscover physical design?
○ Real time, lookup-friendly
○ Sorted data enables sparse index, value-based deltas, streaming joins and

aggregations?
○ Per-attribute inverted indices on demand for lookup on arbitrary attribute mix

State of Play
● Huge production wins for interactive from Velox
● Onboarding batch
● Strong concept for Wave and Verax
● File formats

Q & A

