Horizons of Composability

Orri Erling
Software Engineer, Meta



The Present: Composable Execution is for real

e \elox accelerates Presto, Spark, Streaming and Al preproc
e Ashared ABI for compute? Heterogeneous hardware?
e |anguage convergence, query optimization?



The Proposition, Again

Build/maintain once for fast query everywhere

Enable faster turnaround in building specialized solutions
One place to optimize for new hardware

Higher quality through more participants and more use cases
Greater consistency of user experience between systems



Wins with Velox

e State of the art implementation of vectorized query operators
e Interactive
o Faster and more consistent service with 1/3 of the equipment vs Java Presto
e Batch
o 3x throughput on same cluster size
e Wins in Spark/Gluten
o ~2.5xin TPC Benchmarks



Experience

Industry-wide interest in composability

Converging Presto, Spark, Streaming is possible

Biggest divergence in built-in functions

Proven wins in performance

Standards, and now commaoditization via open source, keep winning



Unifying?

Back end is great, scans, joins, groupBys are the same
Functions, everybody has their own

Front end is harder, users are married to language/dialect
Asks on query optimization are not as in the benchmarks



The Ongoing Inflection

Al becomes the prime consumer, data keeps getting bigger

Data is cheap and plentiful

Data is 3% of world power bill

Green data relies on efficiency gains, which rely on hardware evolution



Generations of Architecture

General purpose CPUs have hit diminishing returns
GPUs keep making new wins
FPGAs could beat generic GPUs on power efficiency and cost

If GPU is the consumer, then might as well manage data on it. Simpler data centers, fewer
SKUs



Velox Futures

e \elox Wave for accelerators
e \erax for query optimization
e File formats for workload evolution



Wave

10+ years of data on GPU - Promising but inconclusive
CPU s like tens of threads, GPUs need 1000x more
Parallelism is plentiful, but it hides under abstraction
Expose it!



Performance is locality * parallelism

Data level = many files

Pipeline = Many operators and many columns
Vectorization = many rows

Instructions = many loads

SIMT - Many executable warps / SM



GPU vs CPU

Best case is ratio of memory throughput, 8-15x

Best case only possible with 100K active lanes

Executable plan is dataflow DAG, as many steps as the longest path length
Each step has all the compute whose prerequisites exist



Wave

Detect suitable plans at run time
Dataflow decomposition and fusion of operators

e Run a few splits (files) at a time, like on CPU, except every step of every file has 10K
runnable SIMT lanes all the time

e So, ~100K runnable lanes across 10K Cuda cores makes for good platform utilization



Summertime Forever

e TPCHQ1

e Run the filter
o decode the columns

e compute hash numbers and expressions
o Group by



Getting Real

Most workload is complex types, aggregates over arrays and maps
It is either independent lanes all the way through or shuffled lanes to align with group by
groups

e approx_percentile, set_union, map_union



Verax

Query optimization: 500K - 1M lines, 1000 engineer years?
Not again.
Can we do the benchmarks in 15K lines and the real workloads in 25K?

Fundamentals, Can we get them right?

Query graph

It's not random rewrites of trees

It is modeling the dependencies accurately, incl. non-inner join edges
Spanning tree of join , allow for some nodes being included many times



Model Real Costs

Run cost model on what you plan to execute

Not just join cardinality but data movement too

Want to know the future? Study history. Workloads repeat all the time
Sampling and history from the get go

Extensibility and New Tricks

Al, wide data need smart late materialization

Maybe non-SQL plans, like multi-table materializations and graph analytics/training (BSP)
Pluggability of new operators/data layouts into candidate generation

Open for ML directed candidate generation



File Formats

e \Wide
o Al, wide data need smart late materialization
o Maybe non-SQL plans, like multi-table materializations and graph analytics/training
(BSP)
o Pluggability of new operators/data layouts into candidate generation
o Open for ML directed candidate generation
e Mutable
o Privacy drives point updates to warehouse/training
o Schema never constant
o Semantic fidelity would like stable identifiers



File Formats (Contd.)

e Parallel

O

O

O

SIMD, GPU need formats with no data dependencies
Parquet/ORC encodings are a non-fit
Metadata is 1/3 of volume, needs random access for metadata

e Random

O

O

O

Will instance optimization/adaptivity rediscover physical design?

Real time, lookup-friendly

Sorted data enables sparse index, value-based deltas, streaming joins and
aggregations?

Per-attribute inverted indices on demand for lookup on arbitrary attribute mix



State of Play

Huge production wins for interactive from Velox
Onboarding batch

Strong concept for Wave and Verax

File formats



Q&A



