
Innovating with storage formats
To push the limits in a hybrid database

CDMS 2023

Eugene Kogan, Software Architect, SingleStore

2

Intro: QP and physical data in traditional OLTP
QP may look and cost multiple a physical data representations to
● JOIN: HASH ⇒ MERGE
● AGGREGATION: HASH ⇒ Streaming
● Minimize the read set given Filter/Join predicates

3

Intro: QP and physical data in traditional OLTP
QP may look and cost multiple a physical data representations to
● JOIN: HASH ⇒ MERGE
● AGGREGATION: HASH ⇒ Streaming
● Minimize the read set given Filter/Join predicates

Base
Table

Index 2Index 1

⋈

⋈

4

Intro: QP and physical data in traditional OLTP
QP may look and cost multiple a physical data representations to
● JOIN: HASH ⇒ MERGE
● AGGREGATION: HASH ⇒ Streaming
● Minimize the read set given Filter/Join predicates

Base Table

Index 3
|

Clust | Incl
|

5

Intro: QP and physical data in New/Distributed OLTP
QP may look for some additional optimizations
● JOIN & AGREGATION: Distributed ⇒ Local
● Minimize the distributed read set given Filter/Join predicates

Base
Table

Unnest
BatchIndex 1

DCA
⋈

⋈
Batch

Filter

6

Intro: QP and physical data in a DW
It's mostly about using metadata (of data in columnar representation) to

● Simplify & optimize query
● Minimize/prune physical read set on different levels

Metadata contains zone maps (MIN/MAX) and NULL info

● WHERE row.col1 < 3 ⇒ WHERE file.col1_MIN < 3 *

This physical read set pruning may be based on

● Dense metadata stored separate from files
○ Usually happens during query planning

● Metadata encoded together with the columnar data files
○ Normally happens in runtime

If indexes are built they are file/block pruning indexes, not row level (e.g. Search Index) **

Multiple redundant data copies with different clustering?
Choose one is to maximize pruning efficiency

Data File

Columnar
Segment

Block/
Page/
RowGroup

Metadata

Zone Maps (MIN/MAX)
NULL Info
Bloom Filters …

7

SingleStoreDB - Transactions & Analytics
● HTAP, Cloud-native

○ Operational and analytical workloads
○ Can run all of TPC-H and TPC-DS competitively with cloud data warehouses
○ Can run TPC-C competitively with cloud operational databases

● Commercially available with over a decade of development
○ About $100M annual revenue

● 100s of customers with demanding production workloads
○ Large finance, telecom, energy and tech companies

● Some properties of the implementation
○ Support MySQL and Mongo API
○ QP uses both code generation and vectorized processing
○ Supports WebAssembly extensions

8

SingleStoreDB - Cluster Architecture & Storage Tiers
● Nodes in a cluster

○ Organized into workspaces
○ That’s where queries are executed
○ Easy to add remove nodes

To control parallelism/latency

● One writable Primary workspace +
zero or more R/O secondary ones
○ Easy to add/remove R/O workspace

● 3-tier storage:
○ RAM (Replicated)
○ Disk (Replicated or cache)
○ Cloud Blob Storage

● No blob writes are on
commit latency critical code path
○ No Files either, only WAL

9

SingleStoreDB - Distributed Query

Aggregator

Leaf 1
Partition 0

Leaf 2
Partition 1

Leaf 3
Partition 2

Aggregator

Leaf 1
Partition 0

Leaf 2
Partition 1

Leaf 3
Partition 2

Client Client

10

Transactions & Analytics: what does it really mean?
Queries with different selectivity have competitive latency and cost

● Low selectivity - full scans for large scale analytics
● Medium selectivity - realtime/operational analytics and information retrieval
● High selectivity and point reads - OLTP/KV

Latency should be stable for operational workloads (medium&high selectivity) ⇒ some kind of load isolation

Different kinds of database mutations should have competitive latency and cost
● Bulk insert should be parallel and cheap, with reasonable freshness when querying
● CUD, trickle inserts, events streamed in from realtime sources,

reasonably sized update and read-modify-write, should be fast (Xms) and cheap
● Sparse updates touching a few rows in each partition

Should support read-modify-write, not only event-driven data modelling
● Should support multi-statement transactions

⇒ Fine-grained locking (row locks), MVCC, scans & seeks, indexes, partitioning

11

SingleStore’s approach to LSM Tree
Multi-level
Memory layer - Level 0

● Row-centric data in Lock-free Skiplist
● Multi-versioned, committed & uncommitted
● Also used for locking
● Logged & replicated (with other tables in the partition)

Disk (& Blob Store) resident levels

● Column-centric data split into Segments
● Json is shredded using rep-def levels, own encodings

Segment & file Metadata in a system table

● Zone maps (MIN/MAX), NULL info
● Positions of deleted rows in Segments

Balance the cost of deletes and scans in analytical queries

● Tax: find row position in a segment on UPSERT, update Metadata
○ No tax if the row is freshly inserted/updated and is in memlayer

● Win: No CPU-intensive LSMT level merging on unordered scans

Memlayer
LF Skiplist

of rows
Metadata

Zone Maps
Deleted rows

S
E

G
 M

 E
 N

 T
 S

co
lu

m
na

r Background
Compactions

WAL Repl

Write Code
Path

12

Hash Index - compact indexing for equality predicates
Row level index for equality Filter and Join predicates
● Zone maps help with range Predicates to some degree
● Use different tech in different memory tiers

Memory layer

● Each index: Lock-free Skiplist of pointers to record versions
○ No value copy for a row to index - just a pointer

● Pick one index when Filters much multiple

Disk (& Blob Store) resident levels

● Dictionary + Posting Lists of row positions
● Immutable and well compressible

○ Single column index size ~= column size
● Complex Filter expr, matching multiple posting lists,

efficiently intersected with the likes of skip pointers

Memlayer
LF Skiplist of rows

LF
Skiplist
(of Ptrs)

New

Pos 1 2 3 … 99 100

Index column foo bar foo … bar bar

Other column 3 5 8 195 199

Offset 1 17

Inverted index foo:1,3 … bar:2,99,100

Segment S1

Posting List
intersection

13

Hash Index #2
Seekable segment encoding
● To take advantage of inverted indexes
● Divide columnar segment into blocks by # of rows
● Additional metadata

○ Block offset table
○ Block level Zone Maps

● Preference to fixed size column encoding

Global Hash Index
● For Segment selection
● Hash Tables of <Segment_ID>:<posting_list_offset>

○ To minimize # of disk reads
● Organized into a tree similar to the LSM

○ Starts as 1-1 Segment-HT
And quickly merged into a HT mapping to many Segments

Multi-column Index
● Multiple single-col work surprisingly well, but can build multi-col too

Full Text Index
● Will use similar technology in the future
● For now we still use Apache Lucene™ Library

BlockBlockBlockBlockBlock

… … …

0x33 S1:17 S2:...

… … …

0x59 S1:1 S2:...

… … …

Global Hash Index’s HashTable

Global Hash Index’s tree of HashTables

Merge

14

Mix row- and column-centric data with Column Groups
Column Group - row-centic data in a column store
● Stored as a struct/record in an extra column
● Full redundancy for now, if configured

○ Planning a mix of column- and row-centric in the future
○ Design can handle different layout for each segment

● As indexes are positional, they are fully applicable to Column Groups
● 30% improvement on TPC-C (narrow rows), but CRUD on wider rows improved 6-8x

New

Pos 1 2 3 … 99 100

Index column foo bar foo … bar bar

Other column 3 5 8 … 195 199

Column Group (*) {foo, 3} {bar, 5} {foo, 8} … {bar, 195} {bar, 199}

Offset 1 17

Inverted index foo:1,3 … bar:2,99,100

Segment S1

15

Smart Scan: how QP uses physical data structures
Stage 1: Segment Selection (Per Partition)
● Inputs: Filter predicates, Global Hash Index, Segment Metadata

○ E.g. combine LookUpGlobalIndex(idx1, “foo”) and (segment.col2_MIN < 3)
● Output: {SEGMENT_ID [, {value, posting_list_offset}[,...]]} …

Stage 2: Per Segment’s Block Row Selection
● Combine Posting Lists (⇐Local Hash Index) and Filters(<unindexed_columns>)
● Output: Selection Vector ({2, 3, 7, 9,...} or 011000101…)
● Feature: Filter predicate reordering, e.g. WHERE idx_col=”foo” AND col2<3 AND f(col3,col5)=11

○ Measure actual cost of decoding and function evaluation on Block 1
○ Reorder Block-to-Block based on actual cumulative cardinalities

Stage 3: Row Projection - Per Block (of a Segment)
● Decide on: a) Access Method SEEKs vs SCAN, b) on use of Column Group, c) reconstruct json or just scan a col
● Selective column decoding or send encoded values upstream to Aggregate or Join.

16

Vector Index for Approx Nearest Neighbor Search
Overview
● An HNSW+IVFPQ index is built for each partition
● Vectors are clustered to centroids

Global Vector Index
● An HNSW index on centroids (in memory)
● Allows for finding closed centroids quickly and accurately

Segment Vector Index
● An inverted index from centroids to list of vectors
● Vectors are PQ-encoded for smaller size and faster distance computation

- Based on FAISS
- In development

17

Smart Scan With Vector Index
Stage 1: Segment Selection (Per Partition)

● Inputs: Filter predicates, Global Hash Index, Segment Metadata
○ E.g. combine LookUpGlobalIndex(idx1, “foo”) and (segment.col2_MIN < 3)

● Output: {SEGMENT_ID [, {value, posting_list_offset}[,...]]} …

Stage 2b: Per Segment’s Block Row Selection
● Combine Posting Lists (⇐Local Hash Index) and Filters(<unindexed_columns>) and Stage 2a output
● Output: Selection Vector ({2, 3, 7, 9,...} or 011000101…)

Stage 3: Row Projection - Per Block (of a Segment)
● Decide on: a) Access Method SEEKs vs SCAN, b) on use of Column Group, c) reconstruct json or just scan a col
● Selective row decoding

Stage 2a: Partition-level Top K Row Selection with Vector Index
● Search HNSW: Output <centroid>
● For each Segment: use PQ-compressed vectors to compute global Top K’ (K’ > K)

Output {SEGMENT_ID, posting_list}...

18

Projection: traditional index for Distributed SQL
Projection - a Materialized View for transactions/OLTP
● Maintained eagerly - on statement boundary

○ ⇒ Higher update cost for minimal read set
● Projection, Re-sorting, Re-partitioning

○ Selection (== filtered Projections - future)

Projection vs traditional Secondary index with included columns
● Can have different sort order and possibly different Sharding
● Can have its own Hash Indexes
● Can have UNIQUE constraints enforced by indexes
● Can have Column Group independent from the base table
● Can have different table type (not covered here)
● No separate statistics

Use in Query Planning
● Aggregation: Hash ⇒ Streaming
● Join: Distributed ⇒ Local
● Scan: Full ⇒ Range
● Scan: use Hash Index or Column Group

CREATE PROJECTION proj1
(SORT KEY (col1, col2),
 SHARD KEY (col1),
 HASH KEY (col3),
 UNIQUE HASH KEY (col1, col11)
)
AS SELECT col1, col2, col3, col11
 FROM base_table;

19

Conclusions
A family of indexing techniques can be fairly cheap to store, maintain and use

● Hash, Vector, Full Text
● Mix row- and column-centric representations
● Just Smart Scan complexity, no impact on Query Planning

Distributed index as a table > traditional secondary index

● This is for OLTP. Different solutions for Analytics and Event Processing.

We have checked every box for HTAP system requirements but more to do

● Indexing nested json elements
● More Vector Indexes
● Materialized Views for analytics and streaming event processing

How should open data format look like to work for an HTAP system?

● Topic for discussion

