Innovating with storage formats
To push the limits in a hybrid database

Intro: QP and physical data in traditional OLTP

QP may look and cost multiple a physical data representations to

e JOIN: HASH = MERGE
e AGGREGATION: HASH = Streaming
e Minimize the read set given Filter/Join predicates

2 Q SingleStore

Intro: QP and physical data in traditional OLTP

QP may look and cost multiple a physical data representations to

e JOIN: HASH = MERGE
e AGGREGATION: HASH = Streaming
e Minimize the read set given Filter/Join predicates

> ~I

3 Q SingleStore

Base
Table

-

Intro: QP and physical data in traditional OLTP

QP may look and cost multiple a physical data representations to

e JOIN: HASH = MERGE
e AGGREGATION: HASH = Streaming
e Minimize the read set given Filter/Join predicates

Index 3
I

Clust | Incl

-

4 b

)

4)

Base Table

-)

Q SingleStore

Intro: QP and physical data in New/Distributed OLTP

QP may look for some additional optimizations

e JOIN & AGREGATION: Distributed = Local
e Minimize the distributed read set given Filter/Join predicates

O)
Base
— Table
=
./

5 Q SingleStore

Intro: QP and physical data in a DW

It's mostly about using metadata (of data in columnar representation) to

Data File

e Simplify & optimize query

e Minimize/prune physical read set on different levels Columnar gfgg//
Metadata contains zone maps (MIN/MAX) and NULL info Segment | RowGroup

e WHERE row.col1 < 3 = WHERE file.col1_MIN < 3 « ﬁ
This physical read set pruning may be based on

Zone Maps (MIN/MAX)
e Dense metadata stored separate from files NULL Info
o Usually happens during query planning Bloom Filters ...

e Metadata encoded together with the columnar data files
o Normally happens in runtime

Metadata

If indexes are built they are file/block pruning indexes, not row level (e.g. Search Index) *

Multiple redundant data copies with different clustering?
Choose one is to maximize pruning efficiency

6 Q SingleStore

SingleStoreDB - Transactions & Analytics

e HTAP Cloud-native

o Operational and analytical workloads
o Canrun all of TPC-H and TPC-DS competitively with cloud data warehouses
o Can run TPC-C competitively with cloud operational databases

e Commercially available with over a decade of development
o About $100M annual revenue

e 100s of customers with demanding production workloads
o Large finance, telecom, energy and tech companies

e Some properties of the implementation
o Support MySQL and Mongo API
o QP uses both code generation and vectorized processing
o Supports WebAssembly extensions

Q SingleStore

SingleStoreDB - Cluster Architecture & Storage Tiers

e Nodes in a cluster
o Organized into workspaces
o That's where queries are executed
o Easy to add remove nodes 5 kil
To control parallelism/latency

Aggregators Master Aggregator

{ Aggregator] ‘ Aggregator |

e 3-tier storage:

o Disk (Replicated or cache)

o Cloud Blob Storage

Primary Workspace Read-only Workspace
. . LEAF LEAF LEAF LEAF
® One ertable Prlmary Workspace + data log 0 log 1 data log1 log0 data log O data log1
file tail tail file tail tail file tail file tail
ZerO Or mOre R/O Secondary OneS cache replica cache replica cache replica cache replica -
o Easy to add/remove R/O workspace At e — - | . - " . 5
l - IK L . I] S -
N2 v %2

Traffic Types: Blob Storage ——> Replication —— Other +=---2
e No blob writes are on

commit latency critical code path
o No Files either, only WAL

8 Q SingleStore

SingleStoreDB - Distributed Query

‘/.
-
-

./.
Vs

{ Aggregator }

4

Leaf 1 Leaf 2 Leaf 3 Leaf 1 Leaf 2 Leaf 3
Partition 0 Partition 1 Partition 2 [Partitiono } [Partitiom } [PartitionZ }

9 Q SingleStore

Transactions & Analytics: what does it really mean?

Queries with different selectivity have competitive latency and cost

® Low selectivity - full scans for large scale analytics
® Medium selectivity - realtime/operational analytics and information retrieval
® High selectivity and point reads - OLTP/KV

Latency should be stable for operational workloads (medium&high selectivity) = some kind of load isolation

Different kinds of database mutations should have competitive latency and cost

e Bulkinsert should be parallel and cheap, with reasonable freshness when querying
e CUD, trickle inserts, events streamed in from realtime sources,

reasonably sized update and read-modify-write, should be fast (Xms) and cheap
e Sparse updates touching a few rows in each partition

Should support read-modify-write, not only event-driven data modelling
e Should support multi-statement transactions

= Fine-grained locking (row locks), MVCC, scans & seeks, indexes, partitioning

10 Q SingleStore

SingleStore’s approach to LSM Tree

Multi-level
Memory layer - Level 0
)) o Metadata
e Row-centric data in Lock-free Skiplist Zone Maps
e Multi-versioned, committed & uncommitted Deleted rows
e Also used for locking
e Logged & replicated (with other tables in the partition)
w
Disk (& Blob Store) resident levels iy
w £
e Column-centric data split into Segments s 3
e Json is shredded using rep-def levels, own encodings o° %
)]

Segment & file Metadata in a system table

e Zone maps (MIN/MAX), NULL info
e Positions of deleted rows in Segments

Balance the cost of deletes and scans in analytical queries

e Tax: find row position in a segment on UPSERT, update Metadata
o No tax if the row is freshly inserted/updated and is in memlayer
11® Win: No CPU-intensive LSMT level merging on unordered scans

Memlayer
LF Skiplist

of rows
[| [|

4

Write Code

X}] Path
[wAL ={ Repl |

J Background

Compactions

Q SingleStore

Row level index for equality Filter and Join predicates
Zone maps help with range Predicates to some degree
o

Use different tech in different memory tiers
Memory layer

Each index: Lock-free Skiplist of pointers to record versions
O

No value copy for a row to index - just a pointer
o

Pick one index when Filters much multiple
Disk (& Blob Store) resident levels

Dictionary + Posting Lists of row positions
e Immutable and well compressible
o Single column index size ~= column size
e Complex Filter expr, matching multiple posting lists,

efficiently intersected with the likes of skip pointers

12

Posting List
intersection

|

Hash Index - compact indexing for equality predicates

Memlayer
LF Skiplist of rows _
— = LF
= " = Skiplist
EEEEE — = (of Ptrs)
Segment S1
Offset 1 17
Inverted index foo:1,3 bar:2,99,100
Pos 1 2

Index column foo bar
Other column 3

5 8

3

99 100

foo

bar bar

195 199

Q SingleStore

Hash Index #2

Block

Block Block

Block

Block

Seekable segment encoding |

e To take advantage of inverted indexes |

e Divide columnar segment into blocks by # of rows
e Additional metadata

o Block offset table

o Block level Zone Maps
e Preference to fixed size column encoding

Global Hash Index
e For Segment selection
e Hash Tables of <Segment_ID>:<posting_list_offset>
o To minimize # of disk reads
e Organized into a tree similar to the LSM
o Starts as 1-1 Segment-HT
And quickly merged into a HT mapping to many Segments

Multi-column Index
e Multiple single-col work surprisingly well, but can build multi-col too

Full Text Index
e Will use similar technology in the future
o For now we still use Apache Lucene™ Library

Global Hash Index’s HashTable

0x33 S1:17

0x59 S1:1

S2:...

S2:...

Global Hash Index’s tree of HashTables

@ Merge

10
]

Q SingleStore

Mix row- and column-centric data with Column Groups

Column Group - row-centic data in a column store
e Stored as a struct/record in an extra column
e Full redundancy for now, if configured

o Planning a mix of column- and row-centric in the future
o Design can handle different layout for each segment

e As indexes are positional, they are fully applicable to Column Groups

e 30% improvement on TPC-C (narrow rows), but CRUD on wider rows improved 6-8x

Offset 1
Inverted index foo:1,3
Pos 1
Index column foo
Other column 3

Column Group (*) {foo, 3}

14

Segment S1

17

bar:2,99,100

99
bar
195

{bar, 195}

100
bar
199

{bar, 199}

Q SingleStore

Smart Scan: how QP uses physical data structures

Stage 1: Segment Selection (Per Partition)
e |Inputs: Filter predicates, Global Hash Index, Segment Metadata
o E.g. combine LookUpGlobalindex(idx1, “foo”) and (segment.col2_MIN < 3)
e Output: {SEGMENT_ID [, {value, posting_list_offset}[...]]} ...

fStage 2. Per Segment’s Block Row Selection

e Combine Posting Lists (Local Hash Index) and Filters(<unindexed_columns>)

e Output: Selection Vector ({2,3, 7, 9,...} or 011000701...)

e Feature: Filter predicate reordering, e.g. WHERE idx_col="foo” AND col2<3 AND f(col3,col5)=11
o Measure actual cost of decoding and function evaluation on Block 1

k o Reorder Block-to-Block based on actual cumulative cardinalities j

Stage 3: Row Projection - Per Block (of a Segment)
e Decide on: a) Access Method SEEKs vs SCAN, b) on use of Column Group, c) reconstruct json or just scan a col
e Selective column decoding or send encoded values upstream to Aggregate or Join.

15 Q SingleStore

Vector Index for Approx Nearest Neighbor Search

Overview

e An HNSW+IVFPQ index is built for each partition
e Vectors are clustered to centroids

Global Vector Index
e An HNSW index on centroids (in memory)

e Allows for finding closed centroids quickly and accurately

Segment Vector Index

e Aninverted index from centroids to list of vectors

e Vectors are PQ-encoded for smaller size and faster distance computation

16

Partition
~
Esegmen‘ﬂ Segmen‘tg] [Segmen‘tSJ
\
3%
S5
7y S :

\

Based on FAISS
In development

~

Se::,men‘t

ve_c‘tor‘5

%‘ vector? D
78

d lus‘te_r3 ﬁ/

(

vectord]

W

700 /J

Q SingleStore

Smart Scan With Vector Index

Stage 1: Segment Selection (Per Partition)
e Inputs: Filter predicates, Global Hash Index, Segment Metadata
o E.g. combine LookUpGlobalindex(idx1, “foo”) and (segment.col2_MIN < 3)
e Output: {SEGMENT_ID [, {value, posting_list_offset}[...]]} ..

(Stage 2a: Partition-level Top K Row Selection with Vector Index A
e Search HNSW: Output <centroid>
e For each Segment: use PQ-compressed vectors to compute global Top K' (K’ > K)

\ Output {SEGMENT_ID, posting_list}... y

Stage 2b: Per Segment’s Block Row Selection
e Combine Posting Lists (<Local Hash Index) and Filters(<unindexed_columns>) and Stage 2a output
e Output: Selection Vector ({2, 3, 7, 9,...} or 011000101...)

Stage 3: Row Projection - Per Block (of a Segment)
e Decide on: a) Access Method SEEKs vs SCAN, b) on use of Column Group, €) reconstruct json or just scan a col
e Selective row decoding

17 Q SingleStore

Projection: traditional index for Distributed SQL

Projection - a Materialized View for transactions/OLTP

Projection vs traditional Secondary index with included columns

Maintained eagerly - on statement boundary

o = Higher update cost for minimal read set
Projection, Re-sorting, Re-partitioning

o Selection (== filtered Projections - future)

Can have different sort order and possibly different Sharding
Can have its own Hash Indexes

Can have UNIQUE constraints enforced by indexes

Can have Column Group independent from the base table
Can have different table type (not covered here)

No separate statistics

Use in Query Planning

18

Aggregation: Hash = Streaming

Join: Distributed = Local

Scan: Full = Range

Scan: use Hash Index or Column Group

/CREATE PROJECTION projl
(SORT KEY (coll, col2),
SHARD KEY (coll),
HASH KEY (col3),
UNIQUE HASH KEY (coll, colll)

)

~

AS SELECT coll, col2, col3, colll

FROM base table;

-

/

Q SingleStore

Conclusions

A family of indexing techniques can be fairly cheap to store, maintain and use

e Hash, Vector, Full Text
e Mix row- and column-centric representations
e Just Smart Scan complexity, no impact on Query Planning

Distributed index as a table > traditional secondary index

e This is for OLTP. Different solutions for Analytics and Event Processing.

We have checked every box for HTAP system requirements but more to do

e Indexing nested json elements
e More Vector Indexes
e Materialized Views for analytics and streaming event processing

How should open data format look like to work for an HTAP system?

e Topic for discussion

19

Q SingleStore

