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Modern Data-driven Applications

ML-assisted Manufacturing
Biomedical Engineering

Natural Sciences

Remote SensingTransportation
Health-care

Finance + many more
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Integrated Data Analysis (IDA) Pipelines
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Challenges
• Deployment Challenges

• Hardware Challenges
• DM+ML+HPC share compilation  

and runtime techniques /  
converging cluster hardware

• End of Dennard scaling
• End of Moore’s law
• Amdahl’s law
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DAPHNE Overall Objective:
Open and extensible system infrastructure
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Increasing specialization



Project Consortium
• 14 Partner Institutions  

from 7 European Countries

• Different Backgrounds
• Data Management
• High-Performance Computing 
• ML Systems
• ML/NLP/Graph Algorithms
• Simulation & Optimization

• Different Application Domains

• Academia and Industry

Know-Center GmbH (coordinator), Austria

AVL List GmbH, Austria

Deutsches Zentrum für Luft- und Raumfahrt e.V., Germany

Eidgenössische Technische Hochschule Zürich, Switzerland

Infineon Technologies Austria AG, Austria

Intel Technology Poland sp. z o.o., Poland

IT-Universitetet i København, Denmark

Kompetenzzentrum Automobil- und  
Industrieelektronik GmbH, Austria

Technische Universität Dresden, Germany

Univerza v Mariboru, Slovenia

Universität Basel, Switzerland

Technische Universität Berlin, Germany

Hasso-Plattner-Institut for Digital Engineering gGmbH, Germany

Institute of Communication and Computer Science, Greece
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Example Use Cases
• DLR Earth Observation

• ESA Sentinel-1/2 datasets  4PB/year
• Training of local climate zone classifiers on So2Sat LCZ42  

(15 experts, 400K instances, 10 labels each, ~55GB HDF5)
• ML pipeline: preprocessing,  

ResNet-20, climate models

• IFAT Semiconductor Ion Beam Tuning
• KAI Semiconductor Material Degradation
• AVL Vehicle Development Process (ejector geometries, KPIs)

• ML-assisted simulations, data cleaning, augmentation
• Cleaning during exploratory query processing

[So2Sat LC42: https://mediatum.ub.tum.de/1454690] 

[Xiao Xiang Zhu et al: So2Sat LCZ42: A 
Benchmark Dataset for the Classification of 

Global Local Climate Zones. GRSM 8(3) 2020]
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Overview of DAPHNE
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System Architecture

Python API w/ lazy evaluation

System Architecture



Language Abstractions

Python API w/ lazy evaluation

System Architecture

def lm(X, y) { // X feature matrix, y labels

  colmu = means(X, 1);     // column means

  colsd = stddev(X, 1);    // column stddevs

  X = (X – colmu) / colsd; // shift and scale

  X = cbind(X, 1);         // append column of ones

  A = t(X) @ X;            // t for transpose

  b = t(X) @ y;            // @ for matrix mult

  return solve(A, b);      // system of linear eq

}

DSL for linear and relational algebra
- Coarse-grained matrix/frame operations
- Physical data independence

- Built-in operations for linear and relational algebra
- High-level operations (e.g., SQL, parameter servers, map)
- Conditional control flow (branches, loops)
- Typed and untyped user-defined functions

- Hierarchy of primitives for data science tasks

Example: linear regression model training (simplified)
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Optimizing Compiler

Python API w/ lazy evaluation

System Architecture

%10:2 = "daphne.vectorizedPipeline"(%5, %colmu, %colsd, %7, %6) ({

^bb0(%arg0: ..., %arg1: ..., %arg2: ..., %arg3: ..., %arg4: ...):

  %12 = "daphne.ewSub"(%arg0, %arg1) : ...

  %13 = "daphne.ewDiv"(%12, %arg2) : ...

  %14 = "daphne.colBind"(%13, %arg3) : ...

  %15 = "daphne.gemv"(%14, %arg4) : ... // rewritten from matmul/@

  %16 = "daphne.syrk"(%14) : ...        // rewritten from matmul/@

  "daphne.return"(%15, %16) : ...

}, ...

MLIR-based Optimizing Compiler
- Intermediate representation DaphneIR (MLIR dialect)
- Systematic lowering from domain-specific operations to 

calls to pre-compiled kernels for heterogeneous hardware

- Traditional programming language rewrites
- Type & property inference, inter-procedural analysis
- Domain-specific rewrites from linear and relational algebra
- Memory management & garbage collection
- Device placement & physical operator selection

Example: linear regression model training (simplified)
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Runtime

Python API w/ lazy evaluation

System Architecture
Distributed and Local Vectorized Execution

Example: linear regression model training (simplified)

- Coarse grained tasks and cache-conscious data binding
- Fused operator pipelines on tiles/vectors of data
- Device kernels for heterogeneous hardware
- Integration of computational storage (e.g., eBPF programs)
- Scheduling for load balancing (e.g., for ops on sparse data)
- Different distributed backends (e.g., gRPC, OpenMPI)
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Holistic Extensibility
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Increasing specialization

DAPHNE Overall Objective:
Open and extensible system infrastructure
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• Deployment Challenges

• Hardware Challenges
• DM+ML+HPC share compilation  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converging cluster hardware
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• End of Moore’s law
• Amdahl’s law
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DAPHNE Overall Objective:
Open and extensible system infrastructure

Increasing specialization



Holistic Extensibility
• Every relevant aspect of a system for IDA pipelines should be 

extensible by the user without a deep understanding of the system

• Research challenges
• How to balance expressiveness vs. increased system complexity?
• How to achieve superb performance underneath abstractions?

3 main aspects

Data representationOperators Optimization/scheduling
- New logical operations
- New physical operators with 

dedicated code for each 
target hardware device

- Often co-designed with 
hardware & algorithms/apps

- New data types (layouts)
- New value types

- Optimizer must be able to 
reason about extensions

- New optimizer passes
- New runtime schedulers
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Low Barrier of Entry
• Typically, all three aspects need to interact to fully integrate a novel hardware device
• But: low barrier of entry required for user adoption

• No unnecessary effort
• No unnecessary restrictions
• Ideally no need to touch target system’s code base

• Facilitate exploratory specialization

• Examples
• Add single physical operator for accelerator, but not entire engine
• New data/value type should work with existing physical operators 

(with acceptable performance), no need for re-implementation
• No requirement for deep integration into optimizer 

(allow usage via hints for initial experiments)
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Towards Holistic Extensibility in DAPHNE
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3-Step Approach for Adding/Using Extensions
Balance of expressiveness and complexity

Efficiency underneath abstractions

Optimize access to extension catalog

Abstractions for cost models
Interesting properties

Propagation of hints
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• Building upon existing works on extensible DBMSs from 1980/90s
• Tailored to needs of today’s data processing systems for IDA pipelines

[Michael J. Carey, Laura M. Haas: 
Extensible Database Management 

Systems. SIGMOD Rec. 19(4) 
1990]



Adding a New Physical Operator
• 1 Implementation

• C++ function, operation-specific interface
• Lots of freedom inside the implementation
• Offering APIs for common tasks 

(data transfer, memory management, …)
• 2 Registration

• Provide basic information to make  
DAPHNE compiler aware of new kernel

• Optionally more information  
(interesting properties/traits, cost models, …)

• 3 Utilization
• Automatically through multiple dispatch  

based on data/value types
• automatically through cost models
• Manually in DaphneDSL

Operation daphne::MatMulOp

Func name myMatMul

Shared lib myKernels.so

Backend GPU

Input types [DenseMat<float>, DenseMat<float>]

Output types [DenseMat<float>]

… …

// Fully automatic (default)

C = A @ B;


// Choose exact kernel

C = §myMatMul(A, B);

// Choose backend

C = A @_GPU B;

void myMatMul(

  DenseMatrix<float>& res,

  const DenseMatrix<float>* lhs,

  const DenseMatrix<float>* rhs

) {

  // e.g., cublasSgemm(...), etc.

}

extension  
catalog

Planned extensions (examples)
- Kernels for various hardware backends
- Readers/writers for various file formats
- Readers/writers for special storage hardware

C++

DaphneDS
L

myKernels.so
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• 1 Implementation
• Interface of DAPHNE matrix or frame  

(get/set/append values, slice, …)
• 2 Registration

• 3 Utilization
• Automatically via cost models 

(e.g., physical size, access patterns, …)
• Manually via hints/casts in DaphneDSL

• 1 Implementation
• New C++ type (e.g., struct) with interface  

for interplay with DAPHNE data types
• 2 Registration

• 3 Utilization
• Explicitly by the user (application semantics)

• Internal selection by the system 
(e.g., runtime-accuracy trade-off)

Adding a New Data/Value Type

// Choose data representation

AF = as.ArrowFrame(F);

Logical type Frame

Type name ArrowFrame

Shared lib myDataTypes.so

… …

Type name Quantized8

Size 8 bit

… …

XQ = as.matrix<Quantized8>(X);

Planned extensions (examples)
- Data types for data layouts of various libraries
- Data types for various sparse matrix formats
- Value types for quantized, packed, complex, …

⇒ Associated operations as ordinary kernels  
(print/parse, cast, read/write from/to file)
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• 1 Implementation
• Leverage extensible nature of 

MLIR-based optimizing compiler
• Implement new MLIR pass

• 2 Registration
• Use MLIR-provided means
• Also: integration of 3rd-party dialects 

from the MLIR ecosystem
• 3 Utilization

• Configure DAPHNE optimizer chain  
to use new pass at the right stage

• 1 Implementation
• Also follow specific interface

• 2 Registration

• 3 Utilization
• Manual selection as default scheme

• Manual selection for a part of a script

Extending the Optimizer or Scheduler

Planned extensions (examples)
- Passes employing new extensions
- Passes deciding placement on accelerators
- Extensions for propagation/estimation of 

interesting data properties

Planned extensions (examples)
- Various static/dynamic self-scheduling 

techniques for local multi-threaded and 
distributed execution

[scheduler=“GSS”, nthreads=32] {

  // complex calculations

}

Name Guided Self-Scheduling (GSS)

Type dynamic

/bin/daphne --scheduler GSS myScript.daph
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Summary
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• Holistic Extensibility for Systems 
tailored to today’s IDA Pipelines
• To address increasing specialization
• Low barrier of entry for adoption  

by researchers and users
• Current Status

• Running DAPHNE prototype
• Ongoing work in various components
• Extensibility features: WIP

• Why should you care?
• Simple integration of prototypes 

(e.g., for novel hardware)
• Easy experimentation for researchers
• Open for collaborations

Summary

DAPHNE overall objective:
Open and extensible system infrastructure

DM + ML + HPC
Integrated Data Analysis (IDA) Pipelines

Open source (Apache v2 license)
https://github.com/daphne-eu/daphne 
v0.2 released on July 31, 2023

Towards inclusive  
developer community
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[Patrick Damme et al.: DAPHNE: An Open  
and Extensible System Infrastructure for 

Integrated Data Analysis Pipelines, CIDR 2022]

https://github.com/daphne-eu/daphne
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