
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under agreement number 957407.

Holistic Extensibility 
for Integrated Data Analysis Pipelines in DAPHNE 

Patrick Damme
Technische Universität Berlin

Invited Talk at CDMS@VLDB 2023, Vancouver, Canada, Aug 28, 2023

Modern Data-driven Applications

ML-assisted Manufacturing
Biomedical Engineering

Natural Sciences

Remote SensingTransportation
Health-care

Finance + many more

2

Integrated Data Analysis (IDA) Pipelines

D

Small-Scale
Simulation w/

diff. params

D’

Featurization
and Random
Reshuffling

ML Model
Training M

ML-assisted  
Full-Scale
Simulation

D’’

Data-Analysis
Pipeline

Data Management Machine Learning High-Perf. Computing

DM ML HPC+ +

Query processing
Data preprocessing 

and cleaning
HPC, custom codes, 

and simulations

ML model training 
and scoring

Open data formats
3

Challenges
• Deployment Challenges

• Hardware Challenges
• DM+ML+HPC share compilation  

and runtime techniques /  
converging cluster hardware

• End of Dennard scaling
• End of Moore’s law
• Amdahl’s law

#1 Data  
Representations

Sparsity Exploitation
from Algorithms to HW

dense

graph

sparse
compressed

#2 Data  
Placement

Local vs distributed
CPUs/ 
NUMA

GPUs
FPGAs/ 
ASICs

#3 Data  
(Value) Types

FP32, FP64, INT8,
INT32, INT64, UINT8,

BF16, TF32,
FlexPoint

[NVIDIA  
A100]

DAPHNE Overall Objective:
Open and extensible system infrastructure

Different
Systems/ 
Libraries

Dev Teams Programming Models

Resource
Managers

Cluster 
Under-

utilization

Data/File
Exchange

4

Increasing specialization

Project Consortium
• 14 Partner Institutions  

from 7 European Countries

• Different Backgrounds
• Data Management
• High-Performance Computing
• ML Systems
• ML/NLP/Graph Algorithms
• Simulation & Optimization

• Different Application Domains

• Academia and Industry

Know-Center GmbH (coordinator), Austria

AVL List GmbH, Austria

Deutsches Zentrum für Luft- und Raumfahrt e.V., Germany

Eidgenössische Technische Hochschule Zürich, Switzerland

Infineon Technologies Austria AG, Austria

Intel Technology Poland sp. z o.o., Poland

IT-Universitetet i København, Denmark

Kompetenzzentrum Automobil- und  
Industrieelektronik GmbH, Austria

Technische Universität Dresden, Germany

Univerza v Mariboru, Slovenia

Universität Basel, Switzerland

Technische Universität Berlin, Germany

Hasso-Plattner-Institut for Digital Engineering gGmbH, Germany

Institute of Communication and Computer Science, Greece

5

Example Use Cases
• DLR Earth Observation

• ESA Sentinel-1/2 datasets  4PB/year
• Training of local climate zone classifiers on So2Sat LCZ42  

(15 experts, 400K instances, 10 labels each, ~55GB HDF5)
• ML pipeline: preprocessing,  

ResNet-20, climate models

• IFAT Semiconductor Ion Beam Tuning
• KAI Semiconductor Material Degradation
• AVL Vehicle Development Process (ejector geometries, KPIs)

• ML-assisted simulations, data cleaning, augmentation
• Cleaning during exploratory query processing

[So2Sat LC42: https://mediatum.ub.tum.de/1454690]

[Xiao Xiang Zhu et al: So2Sat LCZ42: A
Benchmark Dataset for the Classification of

Global Local Climate Zones. GRSM 8(3) 2020]

6

https://mediatum.ub.tum.de/1454690

Overview of DAPHNE

7

System Architecture

Python API w/ lazy evaluation

System Architecture

Language Abstractions

Python API w/ lazy evaluation

System Architecture

def lm(X, y) { // X feature matrix, y labels

 colmu = means(X, 1); // column means

 colsd = stddev(X, 1); // column stddevs

 X = (X – colmu) / colsd; // shift and scale

 X = cbind(X, 1); // append column of ones

 A = t(X) @ X; // t for transpose

 b = t(X) @ y; // @ for matrix mult

 return solve(A, b); // system of linear eq

}

DSL for linear and relational algebra
- Coarse-grained matrix/frame operations
- Physical data independence

- Built-in operations for linear and relational algebra
- High-level operations (e.g., SQL, parameter servers, map)
- Conditional control flow (branches, loops)
- Typed and untyped user-defined functions

- Hierarchy of primitives for data science tasks

Example: linear regression model training (simplified)

9

Optimizing Compiler

Python API w/ lazy evaluation

System Architecture

%10:2 = "daphne.vectorizedPipeline"(%5, %colmu, %colsd, %7, %6) ({

^bb0(%arg0: ..., %arg1: ..., %arg2: ..., %arg3: ..., %arg4: ...):

 %12 = "daphne.ewSub"(%arg0, %arg1) : ...

 %13 = "daphne.ewDiv"(%12, %arg2) : ...

 %14 = "daphne.colBind"(%13, %arg3) : ...

 %15 = "daphne.gemv"(%14, %arg4) : ... // rewritten from matmul/@

 %16 = "daphne.syrk"(%14) : ... // rewritten from matmul/@

 "daphne.return"(%15, %16) : ...

}, ...

MLIR-based Optimizing Compiler
- Intermediate representation DaphneIR (MLIR dialect)
- Systematic lowering from domain-specific operations to

calls to pre-compiled kernels for heterogeneous hardware

- Traditional programming language rewrites
- Type & property inference, inter-procedural analysis
- Domain-specific rewrites from linear and relational algebra
- Memory management & garbage collection
- Device placement & physical operator selection

Example: linear regression model training (simplified)

10

Runtime

Python API w/ lazy evaluation

System Architecture
Distributed and Local Vectorized Execution

Example: linear regression model training (simplified)

- Coarse grained tasks and cache-conscious data binding
- Fused operator pipelines on tiles/vectors of data
- Device kernels for heterogeneous hardware
- Integration of computational storage (e.g., eBPF programs)
- Scheduling for load balancing (e.g., for ops on sparse data)
- Different distributed backends (e.g., gRPC, OpenMPI)

11

Holistic Extensibility

12

Increasing specialization

DAPHNE Overall Objective:
Open and extensible system infrastructure

Challenges
• Deployment Challenges

• Hardware Challenges
• DM+ML+HPC share compilation  

and runtime techniques /  
converging cluster hardware

• End of Dennard scaling
• End of Moore’s law
• Amdahl’s law

#1 Data  
Representations

Sparsity Exploitation
from Algorithms to HW

dense

graph

sparse
compressed

#2 Data  
Placement

Local vs distributed
CPUs/ 
NUMA

GPUs
FPGAs/ 
ASICs

#3 Data  
(Value) Types

FP32, FP64, INT8,
INT32, INT64, UINT8,

BF16, TF32,
FlexPoint

[NVIDIA  
A100]

Different
Systems/ 
Libraries

Dev Teams Programming Models

Resource
Managers

Cluster 
Under-

utilization

Data/File
Exchange

13

DAPHNE Overall Objective:
Open and extensible system infrastructure

Increasing specialization

Holistic Extensibility
• Every relevant aspect of a system for IDA pipelines should be

extensible by the user without a deep understanding of the system

• Research challenges
• How to balance expressiveness vs. increased system complexity?
• How to achieve superb performance underneath abstractions?

3 main aspects

Data representationOperators Optimization/scheduling
- New logical operations
- New physical operators with

dedicated code for each
target hardware device

- Often co-designed with
hardware & algorithms/apps

- New data types (layouts)
- New value types

- Optimizer must be able to
reason about extensions

- New optimizer passes
- New runtime schedulers

14

Low Barrier of Entry
• Typically, all three aspects need to interact to fully integrate a novel hardware device
• But: low barrier of entry required for user adoption

• No unnecessary effort
• No unnecessary restrictions
• Ideally no need to touch target system’s code base

• Facilitate exploratory specialization

• Examples
• Add single physical operator for accelerator, but not entire engine
• New data/value type should work with existing physical operators 

(with acceptable performance), no need for re-implementation
• No requirement for deep integration into optimizer 

(allow usage via hints for initial experiments)

15

Towards Holistic Extensibility in DAPHNE

16

3-Step Approach for Adding/Using Extensions
Balance of expressiveness and complexity

Efficiency underneath abstractions

Optimize access to extension catalog

Abstractions for cost models
Interesting properties

Propagation of hints

17

• Building upon existing works on extensible DBMSs from 1980/90s
• Tailored to needs of today’s data processing systems for IDA pipelines

[Michael J. Carey, Laura M. Haas:
Extensible Database Management

Systems. SIGMOD Rec. 19(4)
1990]

Adding a New Physical Operator
• 1 Implementation

• C++ function, operation-specific interface
• Lots of freedom inside the implementation
• Offering APIs for common tasks 

(data transfer, memory management, …)
• 2 Registration

• Provide basic information to make  
DAPHNE compiler aware of new kernel

• Optionally more information  
(interesting properties/traits, cost models, …)

• 3 Utilization
• Automatically through multiple dispatch  

based on data/value types
• automatically through cost models
• Manually in DaphneDSL

Operation daphne::MatMulOp

Func name myMatMul

Shared lib myKernels.so

Backend GPU

Input types [DenseMat<float>, DenseMat<float>]

Output types [DenseMat<float>]

… …

// Fully automatic (default)

C = A @ B;

// Choose exact kernel

C = §myMatMul(A, B);

// Choose backend

C = A @_GPU B;

void myMatMul(

 DenseMatrix<float>& res,

 const DenseMatrix<float>* lhs,

 const DenseMatrix<float>* rhs

) {

 // e.g., cublasSgemm(...), etc.

}

extension  
catalog

Planned extensions (examples)
- Kernels for various hardware backends
- Readers/writers for various file formats
- Readers/writers for special storage hardware

C++

DaphneDS
L

myKernels.so

18

• 1 Implementation
• Interface of DAPHNE matrix or frame  

(get/set/append values, slice, …)
• 2 Registration

• 3 Utilization
• Automatically via cost models 

(e.g., physical size, access patterns, …)
• Manually via hints/casts in DaphneDSL

• 1 Implementation
• New C++ type (e.g., struct) with interface  

for interplay with DAPHNE data types
• 2 Registration

• 3 Utilization
• Explicitly by the user (application semantics)

• Internal selection by the system 
(e.g., runtime-accuracy trade-off)

Adding a New Data/Value Type

// Choose data representation

AF = as.ArrowFrame(F);

Logical type Frame

Type name ArrowFrame

Shared lib myDataTypes.so

… …

Type name Quantized8

Size 8 bit

… …

XQ = as.matrix<Quantized8>(X);

Planned extensions (examples)
- Data types for data layouts of various libraries
- Data types for various sparse matrix formats
- Value types for quantized, packed, complex, …

⇒ Associated operations as ordinary kernels  
(print/parse, cast, read/write from/to file)

19

• 1 Implementation
• Leverage extensible nature of 

MLIR-based optimizing compiler
• Implement new MLIR pass

• 2 Registration
• Use MLIR-provided means
• Also: integration of 3rd-party dialects 

from the MLIR ecosystem
• 3 Utilization

• Configure DAPHNE optimizer chain  
to use new pass at the right stage

• 1 Implementation
• Also follow specific interface

• 2 Registration

• 3 Utilization
• Manual selection as default scheme

• Manual selection for a part of a script

Extending the Optimizer or Scheduler

Planned extensions (examples)
- Passes employing new extensions
- Passes deciding placement on accelerators
- Extensions for propagation/estimation of

interesting data properties

Planned extensions (examples)
- Various static/dynamic self-scheduling

techniques for local multi-threaded and
distributed execution

[scheduler=“GSS”, nthreads=32] {

 // complex calculations

}

Name Guided Self-Scheduling (GSS)

Type dynamic

/bin/daphne --scheduler GSS myScript.daph

20

Summary

21

• Holistic Extensibility for Systems
tailored to today’s IDA Pipelines
• To address increasing specialization
• Low barrier of entry for adoption  

by researchers and users
• Current Status

• Running DAPHNE prototype
• Ongoing work in various components
• Extensibility features: WIP

• Why should you care?
• Simple integration of prototypes 

(e.g., for novel hardware)
• Easy experimentation for researchers
• Open for collaborations

Summary

DAPHNE overall objective:
Open and extensible system infrastructure

DM + ML + HPC
Integrated Data Analysis (IDA) Pipelines

Open source (Apache v2 license)
https://github.com/daphne-eu/daphne
v0.2 released on July 31, 2023

Towards inclusive  
developer community

22

[Patrick Damme et al.: DAPHNE: An Open  
and Extensible System Infrastructure for

Integrated Data Analysis Pipelines, CIDR 2022]

https://github.com/daphne-eu/daphne

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under agreement number 957407.

Feel free to get in touch: 
patrick.damme@tu-berlin.de
https://daphne-eu.eu/

https://twitter.com/daphne_eu

https://www.linkedin.com/in/daphne-eu-project-695735230/

https://github.com/daphne-eu

https://daphne-eu.eu/
https://twitter.com/daphne_eu
https://www.linkedin.com/in/daphne-eu-project-695735230/
https://github.com/daphne-eu

