CIE)WLTCKDB
A Modern Modular & Extensible
Database System

«@®
Mark Raasveldt DuckDB Labs

Who Am |?

Mark Raasveldt
CTO of DuckDB Labs

Postdoc at CWI
Database Architectures Group

PhD at CWI

What is DuckDB?

 DuckDB
* In-Process OLAP DBMS
 “The SQLite for Analytics”

* Free and Open Source (MIT)
» duckdb.org

http://duckdb.org

What is DuckDB?

* SQLite inspired us in many ways:
e Easy installation
* Ease of use

e Robustness

 DuckDB aims to be the “SQLite for Analytics”

%the

Data Analytics
X
Analytics has unique challenges o N At
w 95 V.o P
d . g "
O O 4
NAAA O ,"

Transactional workloads = simple queries

SQLite can be feature complete with a very small footprint

Analytical workloads = complex queries

DuckDB needs many more operations, functions, optimizers,....

Collaboration in Analytics

Analytics requires a giant diversity of operations

Collaboration is required!

A single entity cannot hope to implement:

Data wrangling tools
Classification algorithms, ML toolkits
Data cleaning tools

etc...

Collaboration in Analytics

Research other important
collaboration area

DuckDB originates from research world
At CWI and elsewhere, people do their research in DuckDB

Important to allow extending/modifying system
e.g. add new join operator, new optimizer, ...

Collaboration in Analytics

System builders want to use components of DuckDB

For example:

Use only the front-end
Use only the back-end

Collaboration in Analytics

How do we enable this collaboration?

Three aspects:
Flexible data import and export

Extensibility of the system

Hooks In different locations in the system

Flexible Data Import & Export

Data Import & Export

Data import and export

Crucial for communication between libraries

| IMPORT = |

Many use cases
Load data exported from other systems
Pre-process in DuckDB— use plotting/statistics/ML libraries
Mix usage DuckDB + other data wrangling libraries

Export data to persistent storage (e.g. Parquet files on S3)

Data Import & Export

What makes DuckDB different?

All database systems can import/export data

... but very slowly!

Don’t Hold My Data Hostage —
A Case For Client Protocol Redesign

Mark Raasveldt
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

m.raasveldt@cwi.nl

ABSTRACT

Transferring a large amount of data from a database to a
client program is a surprisingly expensive operation. The
time this requires can easily dominate the query execution
time for large result s This represents a significant hurdle
for external data analysis, for example when using statistical
software. In this paper, we explore and analyse the result set
serialization design space. We present experimental results
from a large chunk of the database market and show the
inefficiencies of current approac! Ve then propose
columnar serialization method that improves transmission
performance by an order of magnitude.

Keywords

Databases, Client Protocols, Data Export

1. INTRODUCTION

Transferring a large amount of data out of a database sys-
tem to a client program is a common task. Examples include
complex stati: lysis or machine learning applications
that need access to large samples for model construction
or verification. However, that operation is expensive. It is
even more costly if the data is transported over a network
connection, which is necessary if the database server runs on
a separate machine or in the cloud.

Result set serialization (RSS) has a significant impact on
overall system performance. Figure 1 shows the time taken
to run the SQL query “SELECT * FROM lineitem” using an
ODBC connector and then fetching the results for various
data management systems. We see large differences between
systems and disappointing performance overall. Modern data
management systems need a significant amount of time to
transfer a modest amount of data from the server to the
client, even when they are located on the same machine.

From a survey of popular machine learning tools, we have
found that none of them integrate into database systems
beyond the bulk transfer of data sets. RapidMiner [18] and
Weka [16] allow analyzing data from a database connection,

ical anal

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy

of this license, visit http c-nd/4.01. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 10
Copyright 2017 VLDB Endowment 2150-8097/17/06.

Hannes Mihleisen
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

hannes@cwi.nl

Netcat (10.255)
wysoL | 1013 Operation
il 19 B
pMsX | 1896 RSS + Transfer
PostgreSQL i 202
MonetDB I: 212
MysQL+C 3913
Hive| B 6299
MongoDB | [6865
o 2 600

400
Wall clock time (s)

Figure 1: Wall clock time for retrieving the lineitem
table (SF10) over a loopback connection. The
dashed line is the wall clock time for netcat to trans-
fer a CSV of the data.

but this is strictly limited to loading. The users must issue
their own queries to load the data from the database. This
will likely be a query such as the one above. None of R’s
machine learning packages [19] use a database interface or
import a package that does. Instead, they again rely on the
user to provide them with data in a table that is already
loaded into memory. The same is true for Python-based
toolkits like SciKit-Learn |26] or TensorFlow [2].

Because of the large cost of data export, analysts settle
for exporting small samples from the database. This way,
data export is not a bottleneck in their analysis pipelines.
However, this generally reduces the accuracy of machine
learning and classification algorithms.

The issue of slow result export has been identified before.
A large amount of previous work focuses on avoiding data
export by performing the computations in the database
instead of exporting the data [30]. However, these solutions
require large, system-specific, overhauls of existing pipelines
and are difficult to implement and optimize. There is little to
no scientific work done on improving result set serialization.

In this paper, we perform a rigorous examination on the
design of existing serialization formats. We analyse how
they perform when transferring various data sets in different
network scenarios, and examine why they show this perfor-
mance. We explore the design space of serialization formats
with experiments, and look at the different trade-offs that
are made when designing a client protocol.

1022

Don’t Hold My Data Hostage -
A Case For Client Protocol Redesign

Ancient protocols, designed to transfer kilobytes of data
Unsuitable for modern workloads!

Import/export through text-based formats (CSV files

Data Import & Export

DuckDB is designed for bulk data export/import

In-process = zero-copy data sharing

Versatile input & output APIs

Same API used for both internal tables & external sources

Allows for streaming data, parallel scans, projection & filter
pushdown, index usage, ...

Data Import & Export

DuckDB can efficiently consume and output many formats

|:5| pandas

=

S R > - .‘-j._
» A v/;: - ':l'_’.‘ ! [&Fu T
‘:‘;f'} -3 ¥ ’{x 2 ’ ﬂ;} ﬁl
i CiB \’;D ol S ©

N?% NumPy JSON

KﬁRow>>> ? |
SQthe PostgreSQL

julia

Extensibility of the System

Extensibility of the System

Extensibility of the system

DuckDB supports extensions that add new functionality

Allows users to integrate new functionality in the system

Extensibility of the System

We create extensions ourselves liberally

Eat your own duck food

‘ PBFMIU '

OU TRY F}:-P

TEEEE
Allows us to add functionality... L N

..without bloating the core system
..that is only included in certain distributions (e.g. Python client)

..without introducing external dependencies to the core

Extensibility of the System ‘

ICU Extension

Adds support for collations (language-based sorting, comparisons)

Adds support for time-zone awareness

Extension Is several megabytes '
Includes ICU localization data ‘

Roughly same size as DuckDB core! INCODeée

As an extension we keep this optional

Extensibility of the System

HTTP-FS Extension

Adds support for reading/writing data over HTTP(S)
Adds support for reading/writing data with S3

Adds dependency on OpenSSL

As an extension, we keep the core dependency-free

Amazon S3

Extensibility of the System
Extensions are powerful

Goal: Allow every component of the system to be extended

Currently extensions can:
Add functions (scalar, aggregate, window)
Add new types

Add data sources and sinks

Add collations, time zones

Add parser functionality, optimizers

Extensibility of the System

Goal: allow users to create and maintain their own extensions

No need to talk to us
No need for us to maintain their code
Extension Repository

Extensions can be installed using SQL

INSTALL httpfs;
LOAD httpfs;

By default from our repository

Custom repository can be used

Different Hooks Into The System

Different Hooks Into The System

DuckDB uses a typical pipeline for query processing

Parser Planner Optimizer Physical Planner Executor
UNOPTIMIZED OPTIMIZED PHYSICAL
0L —— SIEMENT —— | 0GICALPLAN — LOGICALPLAN ~— PLAN —

Standard workflow: use all components

EXECUTION

Different Hooks Into The System @

Standard pipeline: SQL input — Data output

System builders/researchers often want to use parts of DuckDB

Different hooks in/out of the system

Different Hooks Into The System

Velox: to use the parser

Parser pipeline: SQL Input — Parse Tokens Output

UNOPTIMIZED OPTIMIZED PHYSICAL

SUL —— STATEMENT —— oo pan —— LosicaLeLn PLAN —

AN

Parse Tokens

EXECUTION

Different Hooks Into The System

Ibis: provide a new front-end to DuckDB

Ibis front-end pipeline: Substrait plan input & Data Output

ibis (substrait)

N\

S0L . STATEMENT UNOPTIMIZED OPTIMIZED PHYSICAL

LOGICALPLAN — ~ LOGICALPLAN — PLAN — EXECUTION

Different Hooks Into The System

Ibis: consume SQL and use a different back-end

Ibis back-end pipeline: SQL input = Substrait plan output

ibis (substrait)

/

UNOPTIMIZED OPTIMIZED PHYSICAL

SiL —— STATEMENT —— | 0GicALPLAN " LOGICALPLAN PLAN —

EXECUTION

Future Extensibility Plans

Future Extensibility Plans

Goal: more extensibility options
New Index types
Alternate versions of existing operators (e.g. new joins)

Define new casts between types DUCKS

AND U.S. POSTAGE STAMPS

Future Extensibility Plans ‘

Goal: support fully custom storage back-end
Currently support data-input and copy output

Missing support for routing insert, update, delete to custom storage

Future Extensibility Plans ‘

DUCKS
Goal: extended custom catalog support SR —

Currently support replacement scans

This allows for views to be stored in a different catalog

Needs to be extended to fully support custom catalogs

Including for all different catalog types

Thanks for having me!

Any questions?

