
DuckDB
A Modern Modular & Extensible 
Database System

 
Mark Raasveldt

9. September 2022CDMS 2022



Mark Raasveldt
CTO of DuckDB Labs

Postdoc at CWI
Database Architectures Group

PhD at CWI

Who Am I?



• DuckDB
• In-Process OLAP DBMS

• “The SQLite for Analytics”

• Free and Open Source (MIT)
• duckdb.org

What is DuckDB?

http://duckdb.org


• SQLite inspired us in many ways:


• Easy installation


• Ease of use


• Robustness


• DuckDB aims to be the “SQLite for Analytics”


What is DuckDB?



Analytics has unique challenges


Transactional workloads = simple queries


SQLite can be feature complete with a very small footprint


Analytical workloads = complex queries 

DuckDB needs many more operations, functions, optimizers,….

Data Analytics



Analytics requires a giant diversity of operations


Collaboration is required! 

A single entity cannot hope to implement:


Data wrangling tools


Classification algorithms, ML toolkits


Data cleaning tools


etc…

Collaboration in Analytics



Research other important 
collaboration area

DuckDB originates from research world
At CWI and elsewhere, people do their research in DuckDB

Important to allow extending/modifying system
e.g. add new join operator, new optimizer, …

Collaboration in Analytics



System builders want to use components of DuckDB

For example:
Use only the front-end
Use only the back-end

Collaboration in Analytics



How do we enable this collaboration?


Three aspects:


Flexible data import and export 

Extensibility of the system


Hooks in different locations in the system

Collaboration in Analytics



Flexible Data Import & Export



Data import and export


Crucial for communication between libraries 

Many use cases 

Load data exported from other systems


Pre-process in DuckDB→ use plotting/statistics/ML libraries


Mix usage DuckDB + other data wrangling libraries


Export data to persistent storage (e.g. Parquet files on S3)


Data Import & Export



What makes DuckDB different?


All database systems can import/export data


… but very slowly! 

Ancient protocols, designed to transfer kilobytes of data


Unsuitable for modern workloads!


Import/export through text-based formats (CSV files)


Data Import & Export

Don’t Hold My Data Hostage - 
A Case For Client Protocol Redesign



DuckDB is designed for bulk data export/import 

In-process = zero-copy data sharing 

Versatile input & output APIs 

Same API used for both internal tables & external sources


Allows for streaming data, parallel scans, projection & filter 
pushdown, index usage, … 

Data Import & Export



DuckDB can efficiently consume and output many formats


Data Import & Export



Extensibility of the System



Extensibility of the system 

DuckDB supports extensions that add new functionality


Allows users to integrate new functionality in the system

Extensibility of the System



We create extensions ourselves liberally


Eat your own duck food


Allows us to add functionality…


…without bloating the core system


…that is only included in certain distributions (e.g. Python client)


…without introducing external dependencies to the core


Extensibility of the System



ICU Extension 

Adds support for collations (language-based sorting, comparisons) 

Adds support for time-zone awareness 

Extension is several megabytes


Includes ICU localization data 

Roughly same size as DuckDB core! 

As an extension we keep this optional

Extensibility of the System



HTTP-FS Extension 

Adds support for reading/writing data over HTTP(S) 

Adds support for reading/writing data with S3 

Adds dependency on OpenSSL 

As an extension, we keep the core dependency-free

Extensibility of the System



Extensions are powerful 

Goal: Allow every component of the system to be extended


Currently extensions can:


Add functions (scalar, aggregate, window)


Add new types


Add data sources and sinks


Add collations, time zones


Add parser functionality, optimizers

Extensibility of the System



Goal: allow users to create and maintain their own extensions 

No need to talk to us


No need for us to maintain their code


Extension Repository 

Extensions can be installed using SQL 
 
 
 
By default from our repository


Custom repository can be used

Extensibility of the System

INSTALL httpfs;
LOAD httpfs;



Different Hooks Into The System



Different Hooks Into The System

Planner Optimizer Physical Planner

SQL STATEMENT UNOPTIMIZED 
LOGICAL PLAN

OPTIMIZED 
LOGICAL PLAN

PHYSICAL 
PLAN

Parser

DuckDB uses a typical pipeline for query processing

Standard workflow: use all components

EXECUTION

Executor



Standard pipeline: SQL input → Data output 

System builders/researchers often want to use parts of DuckDB 

Different hooks in/out of the system 

Different Hooks Into The System



Different Hooks Into The System

SQL STATEMENT UNOPTIMIZED 
LOGICAL PLAN

OPTIMIZED 
LOGICAL PLAN

PHYSICAL 
PLAN EXECUTION

Parse Tokens

Velox: to use the parser


Parser pipeline: SQL Input → Parse Tokens Output



Different Hooks Into The System

Ibis: provide a new front-end to DuckDB 

Ibis front-end pipeline: Substrait plan input → Data Output


SQL STATEMENT UNOPTIMIZED 
LOGICAL PLAN

OPTIMIZED 
LOGICAL PLAN

PHYSICAL 
PLAN EXECUTION

ibis (substrait)



Different Hooks Into The System

Ibis: consume SQL and use a different back-end


Ibis back-end pipeline: SQL input → Substrait plan output


SQL STATEMENT UNOPTIMIZED 
LOGICAL PLAN

OPTIMIZED 
LOGICAL PLAN

PHYSICAL 
PLAN EXECUTION

ibis (substrait)



Future Extensibility Plans



Goal: more extensibility options


New index types


Alternate versions of existing operators (e.g. new joins)


Define new casts between types


Future Extensibility Plans



Goal: support fully custom storage back-end  

Currently support data-input and copy output 

Missing support for routing insert, update, delete to custom storage


Future Extensibility Plans



Goal: extended custom catalog support


Currently support replacement scans 

This allows for views to be stored in a different catalog


Needs to be extended to fully support custom catalogs


Including for all different catalog types

Future Extensibility Plans



Thanks for having me!

Any questions?


