EFFICIENT PROPERTY PROJECTIONS OF
GRAPH QUERIES OVER RELATIONAL DATA

Mikael Morales (Oracle Labs), Vlad loan Haprian (Oracle Labs), Srinivas
Karthik (EPFL), Danica Porobic (Oracle), Laurent Daynés (Oracle Labs),
Anastasia Ailamaki (EPFL & RAW Labs)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

What is a property graph?

A set of vertices and edges
Edges connect vertices
Vertices and edges can have

*labels (one or more)
« Alabelis anidentifier
« that also provides typing information

» properties/attributes (zero or more)

By virtue of properties being associated with labels.

A property is a typed key/value pair.

-

:Person
name = ‘Amber
age = 25

:friendOf {2513}
since ='08/01/2014

:Person
name = ‘Paul’

age = 30

:worksAt{1831}
startDate ='09/01/2015’

— @

:friendOf{1173

:knows{2200}

~

:Company
name = ‘Oracle’
location =
‘Redwood City’

:Person
name = ‘Heather

age =27 /

Full materialization

SELECT * FROM GRAPH_TABLE(MY_GRAPH
MATCH (a is Person) - (b is Car)
COLUMNS (a.age, b.brand)) T;

Paths
= m _bid
Runtime 4
o)
3 3
Q Projection
ol Fo®
o//‘“" @ 32 Mercedes
Q*--Q 43 Ferrari
S 56 BMW

’ Low execution times but very high memory footprint!

e

(T

In-Memory storage

Person Table

0 32 Joe Lausanne

1 43 Bob New York

2 23 Alice Geneva

3 56 John Zurich
Car Table

0 Ferrari

1 Renault
2 Toyota
3 BMW
4

Mercedes

Batch on-demand projections

SELECT * FROM GRAPH_TABLE(MY_GRAPH
MATCH (a is Person) - (b is Car)
COLUMNS (a.age, b.brand)) T;

Paths
Querv = m I!El —
Runtime
3 3
q Projection
ol &OP®
o/:?““ @ ¢ 32 Mercedes
Q,_.Q 43 Ferrari
S 56 BMW

4 Too slow as the number of matching paths quickly explodes

Table scans

for each
batch of
paths

(T

Persistent storage

Person Table

Lausanne
New York
Geneva
Zurich

0 Ferrari

1 Renault
2 Toyota
3 BMW
4

Mercedes

Gra h Cache Graph Pattern Matcher
Mar?ager: C——)@ © o

= 2 2 o ©
Overview pvid | eeid | cvid |

Batch of Graph Topology

.o o 1 matching paths

SELECT p.name, esince, cbrand | B~ o
(Fﬁggfsir?;'ﬁ{ﬁ'gwns]_>(c.car) ‘ I Graph Projection Cache Manager
WHERE p.name = ‘John' 1 4a

4b
pid | p.name J eeid | esince § cvid | cbrand
pvid |ecid (cvic T] |

--- Lazy Materialization Buffers
Y ovic [p.name | ecid [esince [cvid |cbrand.
Materialized Paths

Caches
John 2003 VW Data Storage Layer / Graph Ids
Person Owns Car

Key | name | age Vid | key | brand _
D N 0 2 s7 2003 o ow
.

1. Caching
Key Idea

Highly Connected vertices are likely to appear
in multiple paths => cache them Cache Hi/ \Zache Miss
Materialize Lazy
Paths Materialization

Cumulative Storage
Access

o

2. Prefetching

Key Idea Fetch likely vertices
from Graph topolog

At level i, siblings of the
current vertex will appear
subsequently => prefetch

HsIng Eraph topolosy Insert it to lazy
materialization buffer

Path pattern: (a) - (b) - (¢)
e\e Fetch properties

- Processed from data storage
e = Prefetched for level b
m Prefetched for level c

Experimental Evaluation: Effect of Caching and Prefetching

512GB DDR4 RAM @ 2133MHz
Single Threaded Execution

Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz,

Graph: LDBC 4GB

Projection: T.agea, T.ageb, T.agec, T.aged
Path pattern: (a) = (b) = (c) - (d)

Output Size: 5 Billion Paths

Z 5 m Prefetching & Caching m Caching Only

Speed Up over On-
Demand Baseline

10%

5.0
2.5
2.0
1.5
o

20% 40% 60%

Cache size at every level as a fraction of vertex table size

Good improvement even with small caches E

Conclusion

* First step toward enabling efficient property projections with
controlled memory footprint

 Takes advantage of the structure of the graph
* Leverage efficient caching mechanisms

Thank You
; =)

