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What is a property graph?

A set of vertices and edges
Edges connect vertices
Vertices and edges can have

*labels (one or more)
« Alabelis anidentifier
« that also provides typing information

» properties/attributes (zero or more)

By virtue of properties being associated with labels.

A property is a typed key/value pair.
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:Person
name = ‘Amber
age = 25

:friendOf {2513}
since ='08/01/2014

:Person
name = ‘Paul’

age = 30

:worksAt{1831}
startDate ='09/01/2015’

— @

:friendOf{1173

:knows{2200}

~

:Company
name = ‘Oracle’
location =
‘Redwood City’

:Person
name = ‘Heather

age =27 /




Full materialization

SELECT * FROM GRAPH_TABLE(MY_GRAPH
MATCH (a is Person) - (b is Car)
COLUMNS (a.age, b.brand) ) T;
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’ Low execution times but very high memory footprint!
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In-Memory storage

Person Table

0 32 Joe Lausanne

1 43 Bob New York

2 23 Alice Geneva

3 56 John Zurich
Car Table

0 Ferrari

1 Renault
2 Toyota
3 BMW
4

Mercedes

_____________________________




Batch on-demand projections

SELECT * FROM GRAPH_TABLE(MY_GRAPH
MATCH (a is Person) - (b is Car)
COLUMNS (a.age, b.brand) ) T;

Paths
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4 Too slow as the number of matching paths quickly explodes

Table scans

for each
batch of
paths
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Persistent storage

Person Table

Lausanne
New York
Geneva
Zurich

0 Ferrari

1 Renault
2 Toyota
3 BMW
4

Mercedes

_____________________________
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1. Caching
Key Idea

Highly Connected vertices are likely to appear
in multiple paths => cache them Cache Hi/ \Zache Miss
Materialize Lazy
Paths Materialization

Cumulative Storage
Access

o



2. Prefetching

Key Idea Fetch likely vertices
from Graph topolog

At level i, siblings of the
current vertex will appear
subsequently => prefetch

HsIng Eraph topolosy Insert it to lazy
materialization buffer

Path pattern: (a) - (b) - (¢)
e\e Fetch properties

- Processed from data storage
e = Prefetched for level b
m Prefetched for level c




Experimental Evaluation: Effect of Caching and Prefetching

512GB DDR4 RAM @ 2133MHz
Single Threaded Execution

Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz,

Graph: LDBC 4GB

Projection: T.agea, T.ageb, T.agec, T.aged
Path pattern: (a) = (b) = (c) - (d)

Output Size: 5 Billion Paths

Z 5 m Prefetching & Caching m Caching Only

Speed Up over On-
Demand Baseline
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Cache size at every level as a fraction of vertex table size

Good improvement even with small caches E




Conclusion

* First step toward enabling efficient property projections with
controlled memory footprint

 Takes advantage of the structure of the graph
* Leverage efficient caching mechanisms
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