
EFFICIENT PROPERTY PROJECTIONS OF
GRAPH QUERIES OVER RELATIONAL DATA

Mikael Morales (Oracle Labs), Vlad Ioan Haprian (Oracle Labs), Srinivas
Karthik (EPFL), Danica Porobic (Oracle), Laurent Daynés (Oracle Labs),

Anastasia Ailamaki (EPFL & RAW Labs)

What is a property graph?

• A set of vertices and edges

• Edges connect vertices

• Vertices and edges can have

• labels (one or more)

• A label is an identifier

• that also provides typing information

• properties/attributes (zero or more)

• By virtue of properties being associated with labels.

• A property is a typed key/value pair.

10
0:Person

name = ‘Amber’
age = 25

20
0

:Person
name = ‘Paul’
age = 30

30
0

:Person
name = ‘Heather’
age = 27

77
7

:Company
name = ‘Oracle’
location =
‘Redwood City’

:worksAt{1831}
startDate = ’09/01/2015’

:friendOf{1173}

:knows{2200}

:friendOf {2513}
since = ’08/01/2014’

3

Full materialization

Paths

SELECT * FROM GRAPH_TABLE(MY_GRAPH
MATCH (a is Person) → (b is Car)
COLUMNS (a.age, b.brand)) T;

Graph
Runtime

Person Table

Car Table

b.id

4

0

3

a.id

0

1

3

Projection
output b.brand

Mercedes

Ferrari

BMW

a.age

32

43

56

Array lookups
by ids

id

0

1

2

3

age

32

43

23

56

name

Joe

Bob

Alice

John

city

Lausanne

New York

Geneva

Zurich

id

0

1

2

3

4

brand

Ferrari

Renault

Toyota

BMW

Mercedes

In-Memory storage

Low execution times but very high memory footprint!

4

Batch on-demand projections

Paths

b.id

4

0

3

a.id

0

1

3

SELECT * FROM GRAPH_TABLE(MY_GRAPH
MATCH (a is Person) → (b is Car)
COLUMNS (a.age, b.brand)) T;

Query
Runtime

Projection
output b.brand

Mercedes

Ferrari

BMW

a.age

32

43

56

Person Table

id

0

1

2

3

age

32

43

23

56

name

Joe

Bob

Alice

John

city

Lausanne

New York

Geneva

Zurich

Car Table

id

0

1

2

3

4

brand

Ferrari

Renault

Toyota

BMW

Mercedes

Table scans
for each
batch of

paths

Too slow as the number of matching paths quickly explodes

Persistent storage

Graph Cache
Manager:
Overview

Key name age

23 John 54

pkey ckey since

23 87 2003

SELECT p.name, e.since, c.brand
FROM G MATCH
(p: person)->[e:owns]->(c:car)
WHERE p.name = ‘John'

Person Owns Car

key brand

13 VW

Vid

0

Eid

0

Vid

1

Graph Ids

p.vid e.eid c.vid

0 0 1

Batch of
matching paths

Graph Pattern Matcher
0

Graph Topology

1 2

0 1

p.vid e.eid c.vid

0 0 1

p.vid p.name

1 -

e.eid e.since

1 -

c.vid c.brand

0 -

Lazy Materialization Buffers

Materialized Paths

p.vid p.name

0 John

e.eid e.since

0 2003

c.vid c.brand

1 VW

Cachesp.name e.since c.brand

John 2003 VW Data Storage Layer

Graph Projection Cache Manager
1

23

4a 4b

5

Traversal Logic

1. Caching

6

Inspect
Cache

Materialize
Paths

Lazy
Materialization

0

3

4

N

...
Cumulative Storage

Access

Key Idea
Highly Connected vertices are likely to appear
in multiple paths => cache them

Cache Hit Cache Miss

2. Prefetching

7

Fetch likely vertices
from Graph topology

Insert it to lazy
materialization buffer

Fetch properties
from data storage

0

1

2

3

5

6

7

Processed

Prefetched for level b

Prefetched for level c

Path pattern: (a) → (b) → (c)

Key Idea
At level 𝑖, siblings of the
current vertex will appear
subsequently => prefetch
using graph topology

Experimental Evaluation: Effect of Caching and Prefetching
Graph: LDBC 4GB
Projection: T.agea, T.ageb, T.agec, T.aged
Path pattern: (a) → (b) → (c) → (d)
Output Size: 5 Billion Paths

Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz,
512GB DDR4 RAM @ 2133MHz
Single Threaded Execution

1.0

1.5

2.0

2.5

3.0

3.5

10% 20% 40% 60%

S
p

e
e

d
 U

p
 o

v
e

r
O

n
-

D
e

m
a

n
d

 B
a

se
li

n
e

Cache size at every level as a fraction of vertex table size

Prefetching & Caching Caching Only

Good improvement even with small caches

•First step toward enabling efficient property projections with

controlled memory footprint

•Takes advantage of the structure of the graph

•Leverage efficient caching mechanisms

9

Conclusion

Thank You

