
Hamilton: a modular open source declarative paradigm for high
level modeling of dataflows

Stefan Krawczyk
skrawczyk@stitchfix.com
stefank@cs.stanford.edu

Stitch Fix
San Francisco, California, USA

Elijah ben Izzy
elijah.benizzy@stitchfix.com

Stitch Fix
San Francisco, California, USA

ABSTRACT
As the role of data in industry has grown, the need for specific data
management tooling has followed. While a hello world example
for a typical machine learning workflow might look trivial, once
one layers in industry concerns such as data & computational lin-
eage, data quality/observability, scalability, unit testing, code base
maintenance and documentation, this melange of specific tooling
often results in a poor end to end user experience with high en-
gineering effort. At Stitch Fix, Hamilton was created initially to
solve a subset of these concerns for Data Scientists, focusing on
simplifying the user experience. However, we have since discovered
that the paradigm Hamilton prescribes is conducive to providing a
unified interface for a user to describe end to end dataflows, in a
way that facilitates modularity of data management system tooling
by forcing a clear decoupling of concerns. It does this by requiring a
programming paradigm change on part of the user that enables easy
specification and execution of dataflow graphs. Hamilton therefore
represents a novel high level approach to modeling dataflows, and
presents an industry pragmatic avenue for building a simpler user
experience that can easily integrate with existing data management
tooling in a modular fashion. Hamilton is available as open source
code.

1 INTRODUCTION
An industry trend that we have lived through at Stitch Fix is the shift
to "Full Stack Data Science"[1], where data scientists are expected
to not only do data science, but also engineer and manage data
pipelines for their production machine learning models. This ap-
proach places additional burdens on data scientists, who no longer
hand off their ideas off to a software engineering team for imple-
mentation and maintenance. Previously, hand-offs allowed data
scientists to focus on a specific domain and set of tooling to accom-
plish their work. They did not have to worry about such production
concerns as, lineage, scalability, or data quality. All they had to do
was build a model and prescribe the recipe for an engineering team
to implement. In a "full stack" model, however, the data scientist has
to pick up the engineering work and understand the complexities
of implementing a production pipeline. This has made it all the
more important to build streamlined experiences that reduce the
complexity of their engineering work, while still enabling them to
move quickly and adjust their pipelines as the business requires.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License and appears in CDMS 2022, 1st International Workshop on Composable Data
Management Systems, September 9, 2022, Sydney, Australia.

At Stitch Fix, the Hamilton framework[5] was conceived to miti-
gate a data science team’s development pain points, with a specific
focus on simplifying the user experience and increasing a team’s
collective ability to collaborate through modular code, while en-
abling a platform team to change underlying infrastructure with
ease. Specifically, Hamilton enables a simple paradigm to create,
maintain, and execute code for data transformations, especially in
the case of highly complex data transformation dependency chains.
Hamilton does this by deriving a directed acyclic graph (DAG) of de-
pendencies from specially defined declarative Python functions that
describe the user’s intended dataflow. Altogether, Hamilton makes
incremental development, code reuse, unit testing, lineage tracking,
data quality checks, and code documentation natural and straight-
forward. Furthermore, its modularity provides avenues to quickly
and easily scale computation onto various distributed frameworks,
e.g. Ray[4]/Spark[12]/Dask[7], as well as extend the platform to
integrate with other data management tools, e.g. lineage/gover-
nance and data quality. Hamilton has enabled data science teams
at Stitch Fix to scale modeling dataflows to support 4000+ data
transformations without impacting team and user productivity.

We will first ground ourselves with a basic extract, transform,
load (ETL) approach to machine learning, then explain the require-
ments that guided Hamilton, and finally spend the rest of this paper
diving into Hamilton’s programming paradigm. We will show the
benefits this paradigm brings, briefly discuss evaluation, propose
future extensions, and finish with a summary.

2 CURRENT ETL APPROACHES
Bringing a machine learning model to production at Stitch Fix re-
quires building an ETL workflow. One has to extract data (SQL or
Python), transform it for input into a model (SQL or Python), trans-
form it into a model (Python), transform data with the help of the
model (Python), and finally load the results somewhere to connect
it back with the business (SQL or Python). Furthermore, this has to
be run on a cadence. If modeled as discrete steps then data/artifacts
have to be materialized between them. An orchestration system,
e.g. [6, 11], is responsible for scheduling and executing these steps.

Should a data scientist need their ETL to fulfill operational con-
cerns such as tracking data lineage, capturing metadata for gover-
nance, or running data quality checks, they would generally have
to integrate these concerns as additional steps in a workflow, or di-
rectly add them into each step. In general this means the experience
of building an ETL is highly coupled with the data management
tooling used.

At Stitch Fix, we saw the following problems emerge firsthand:

• Within each step, the code was likely to be poorly docu-
mented and have very low unit test coverage. This meant
that maintenance and understanding of ETLs over time be-
came harder which negatively impacted team productivity.

• The transformation logic in each step was coupled to ma-
terialization. This limited the reuse of this logic and the
flexibility to change what a step in an ETL represents. This
impacts a team’s velocity to iterate and create new ETLs.

• It was hard for a platform team to change underlying in-
frastructure without requiring a large effort on part on the
data science teams to refactor/rewrite their code.

3 HAMILTON REQUIREMENTS
The aforementioned problems at Stitch Fix were particularly acute
for one data science team that largely worked on time-series fore-
casting model ETLs. They were tasked with managing thousands
of data transforms that were used to generate inputs for many time-
series models, that then forecasted the business. With this scale in
mind, the following requirements drove the design of Hamilton:

• Unit testing should be easy to implement and not an after-
thought.

• It should be natural to document ones work, and keep that
documentation up to date.

• Creation & modification of dataflows should be painless.
• A change in underlying data management infrastructure

should not overburden a data science team to adopt/migrate
to it.

4 HAMILTON FRAMEWORK
The Hamilton framework achieves these requirements through
three distinct concepts:

• Hamilton functions: the low-level unit of work users use to
encode dataflow components.

• Function DAG: The representation of the dataflow’s depen-
dency structure, built by combining function definitions.

• Driver code: the code used to generate an output by spec-
ifying the functions used to build the DAG, the inputs to
execution, and the parts of the DAG to run.

4.1 Hamilton Functions
Hamilton functions force a novel programming paradigm on the
user. Like regular Python functions, they encapsulate computational
logic. However, the user is not responsible for invoking functions
and assigning the results to a variable. Instead, this is encoded in the
structure of the function itself in a declarative manner. The function
name serves to specify, or declare, the intended output variable, and
the function input parameters (as well as their type-annotations)
map to expected input variables, i.e. declared dependencies. In the
context of creating a dataframe, the function name serves as the
intended output column name, and the function input parameters
serve as the expected input columns/values. Type annotations on the
function and the variables are required by the Hamilton Framework
to enable simple type checking and to aid in code readability.

Note (1), Hamilton can be used to model any python object cre-
ation. E.g. extracting data from a database, creating numpy matri-
ces, fitting scikit-learn models, building custom Python objects, etc.

More typically, one models a complex data transformation process
(i.e. feature engineering) for a machine learning workflow, along
with, optionally, the entire machine learning workflow itself. Note
(2), Hamilton assumes user python dependencies are homogeneous,
though this not a strict requirement.

1 # rather than

2 df['acquisition_cost '] = df['spend '] / df['signups ']

3

4 # a user would instead write

5 def acquisition_cost(

6 signups: pd.Series , spend: pd.Series) -> pd.Series:

7 """ Example showing a simple Hamilton function """

8 return spend / signups

Listing 1: the core Hamilton programming paradigm, using
Pandas dataframe column creation as an example.

Listing 1 shows what the paradigm replaces. How Hamilton pro-
cesses the defined function is decomposed in Table 1. By defining
functions in this manner, the user specifies their intended dataflow.
This method of writing Python functions has a variety of implica-
tions:

4.1.1 Tight encapsulation of transform logic. Hamilton functions
push a user to write logic that is decoupled from how data is re-
trieved or saved. This results in a single code block for defining
transform logic, and helps ensure that transform logic is re-useable
in various contexts.

4.1.2 Verbosity. This approach increases the lines of code required
for expressing simple operations. However, the benefits outweigh
the cost. Inputs are clearly specified, and logic is encapsulated in
named functions.

4.1.3 Unit Testing. As Hamilton functions contain well encapsu-
lated logic and clearly specify inputs, all data transform code is unit
testable!

4.1.4 Code readability and documentation.

(1) Encapsulating feature logic in functions implies a natural
location for documentation (namely the Python docstring).

(2) Coupling the name of the function with a reusable down-
stream artifact forces more meaningful naming. It is trivial
to determine the definition of a feature and locate its usage.
One need simply to search the codebase for a function with
that name or which has that as an input argument.

4.1.5 Vector friendly computation. For creating dataframes, the
Hamilton programming paradigm pushes a user to write a function
to create a single column, with inputs as columns as well. This
then naturally leads the user to write logic that can utilize vector
computation, which often speeds up execution.

4.1.6 Functions as the core interface. Python functions have well
defined boundaries; inputs go in, and one output comes out. They
can be serialized, inspected, and executed. Therefore, functions are
used as a universal interface and building block for both the user
experience and the framework. A user does not need to implement
nor understand a special interface to use the core Hamilton features.
Similarly, the framework, without knowing the exact shape of the
function beforehand, has a clear object to work with, where it

2

Table 1: How functions become nodes in a the DAG using the function defined in Listing 1 as an example.

Function Name acquisition_cost Node name
Type-hints pd.Series Node input & output types

Parameter Names signups, spend Upstream dependencies
Documentation Example showing a simple Hamilton function Node Documentation
Function Body return spend / signups Node Definition

can wrap the user’s functions to inject operational concerns via
decorators (see 4.2), or at run time (see 4.3.3).

4.2 Advanced Hamilton Functions
In an effort to encapsulate operational concerns and reduce repeti-
tive function logic, Hamilton comes with a variety of decorators.
Decorators primarily fulfill one of the following purposes:

(1) Determining whether a function should exist. if else blocks
are dropped in favor of readable annotations.

(2) Parameterizing function creation. A single function can
create multiple DAG nodes.

(3) Simplifying function logic by promoting reuse. Syntactic
sugar can help reduce verbosity and repeated code; simi-
larly, an update to business logic need only happen in one
place in the code.

(4) Modeling operational concerns in a modular manner. For
example, addingmetadata for governance purposes, or spec-
ifying run time data expectations. This facilitates having a
single source of truth for information about a transform.

Hamilton decorators are extensible, and can also be layered to
enable highly expressive functions. This a core enabler of data
management system modularity. We direct readers to the Hamilton
documentation[5] for more information.

4.3 The Function DAG
The function DAG is the framework’s representation of the nodes
that should be executed and the dependencies between them.

4.3.1 Node Creation. Hamilton resolves the mapping of functions
(written in the above format) to nodes. In the case of Hamilton
functions annotated with a decorator(s), a resolution step occurs
to determine how many nodes to create (e.g. to add data quality
checks), and what the nodes should be named. Functions beginning
with _ are presumed to be helper functions and thus excluded from
inclusion in the DAG.

4.3.2 DAG Construction. Hamilton compiles the DAG from a list
of Python modules containing Hamilton functions and optional
configuration. It collects the relevant functions to create nodes,
determines node dependencies, and assigns edges between them.

4.3.3 DAG Walking. Given desired outputs, a topological sorting
of the DAG is performed to determine the execution order. As the
DAG is walked, additional operational concerns are injected (via
graph adapters), i.e. checking input types, delegating computation,
and constructing the object returned from execution. See listing
7 in the Appendix for an example of the code required to make
Hamilton execute nodes on Ray.

4.4 Driver Code
Driver code steers execution of the Function DAG, providing a
convenient abstraction layer. Thus the user never has to interact
with the DAG itself, and instead utilizes the driver to run and
manage their dataflow. This is also where operational settings and
concerns are provided for DAG construction. The driver handles
the following:

4.4.1 DAG Instantiation. The Driver directs construction of the
Function DAG. Creation of the driver is as simple as the following:

1 from hamilton import driver

2 from funcs import spend_forecast , spend_data_loader

3

4 config = {...}

5 modules = [spend_data_loader , spend_forecast]

6 dr = driver.Driver(config , *modules , adapter =...)

Listing 2: Code to instatiate a Driver & DAG.

Note that the call to instantiate the driver accepts a config ar-
gument. This takes the form of a dictionary with string keys and
Python objects as values, that serves two purposes: (1) it helps
determine the shape of the DAG when coupled with appropriate
decorators (section 4.2); (2) it sets inputs that a user wants to be
invariant between DAG execution runs. Meanwhile, the adapter
argument (optional) controls execution (such as delegating to Dask),
and determines the object type returned from DAG execution.

4.4.2 DAG Execution. The driver has two primary methods:
(1) execute(outputs_wanted, inputs, overrides) exe-

cutes the DAG, computing only what is required to cre-
ate the output, and returns a python object, e.g. a Pandas
dataframe.

(2) visualize_execution(outputs_wanted, inputs, ...)
visualizes the subsection of the DAG required for execution.

Note that the user can pass parameters to the DAG through two
Python dictionaries: inputs and overrides. Inputs specifies run
time inputs to the DAG, providing requisite dependencies that are
not satisfied by existing nodes. Overrides enables the user to by-
pass execution of specified nodes, effectively short-circuiting their
computation. Hamilton will forego computation of any upstream
node depended on solely by overridden nodes. By offering these pa-
rameterization capabilities, Hamilton enables precise control over
the dataflow’s structure and execution.

4.5 A Hamilton Example
Since Hamilton represents a new paradigm, let us walk through a
contrived dataflow that expresses:

(1) extracting some data.
(2) transforming the data to create input features.

3

(3) fitting a time-series model.
(4) using that time-series model to forecast the future.
(5) employing a few decorators to simplify the code.

We will then show three ways of executing the dataflow to demon-
strate modularity:

(1) as a single step to be orchestrated.
(2) as two steps to be orchestrated.
(3) as a single step that delegates to the Ray framework for

distributed computation.

1 # in a module , e.g. my_dataflow_functions.py

2 import datetime

3 import pandas as pd

4 from time_series_library import model

5 from sklearn.metrics import mean_squared_error

6 from hamilton.function_modifiers import config ,

extract_columns , tag , check_output

7 import loader

8

9 # extract and data transformation functions

10 @extract_columns('year', 'week', 'spend ', 'signups ', 'A',

'B', 'C')

11 @tag(source='db.table ', pii='False ', currency='USD',

owner='team:data_engineering ')

12 def actual_loader(dates: 'some_date_object ') -> pd.

DataFrame:

13 """ Runs SQL/pulls from a datastore/database."""

14 return loader.load_actuals(dates)

15

16 @check_output(allow_nans=False)

17 def weights () -> pd.Series:

18 return loader.get_weights ()

19

20 @config.when(region='UK')

21 def holidays__uk(year: pd.Series , week: pd.Series) -> pd.

Series:

22 return is_uk_holiday(year , week)

23

24 @config.when(region='US')

25 def holidays__us(year: pd.Series , week: pd.Series) -> pd.

Series:

26 return is_holiday(year , week)

27

28 def avg_3wk_spend(spend: pd.Series) -> pd.Series:

29 return spend.rolling (3).mean()

30

31 def acquisition_cost(spend: pd.Series , signups: pd.Series

) -> pd.Series:

32 return spend / signups

33

34 def spend_shift_3weeks(spend: pd.Series) -> pd.Series:

35 return spend.shift (3)

36

37 def spend_b(acquisition_cost: pd.Series , B: pd.Series) ->

pd.Series:

38 return acquisition_cost * B

39

40 # curates specific dataset for time -series needs

41 def data_set(spend_b: pd.Series , spend_shift_3weeks: pd.

Series , ...) -> pd.DataFrame:

42 """ Abbreviated. Data set for input to the model."""

43 return pd.DataFrame ([spend_b , spend_shift_3weeks ,

...]).T

44

45 # model training and forecasting functions

46 def train_X(cut_off: datetime.datetime , features: List[

str], data_set: pd.DataFrame) -> pd.DataFrame:

47 return data_set[data_set.index < cut_off][features]

48

49 def train_y(cut_off: datetime.datetime , target_name: str ,

data_set: pd.DataFrame) -> pd.Series:

50 return data_set[data_set.index <cut_off][target_name]

51

52 def ts_model(train_X: pd.DataFrame , train_y: pd.Series)

-> model.TSModel:

53 return model.fit(train_X , train_y)

54

55 def predict_X(cut_off: datetime.datetime , features: List[

str], data_set: pd.DataFrame) -> pd.DataFrame:

56 return data_set[data_set.index >= cut_off][features]

57

58 @check_output(allow_nans=False , range =(0.0, 10000.0))

59 def forecast(ts_model: model.TSModel , predict_X: pd.

DataFrame) -> pd.Series:

60 return ts_model.predict(predict_X)

Listing 3: Shows how Hamilton could model a time-series
modeling dataflow. Note: modularity of the dataflow can
be achieved by extracting functions into separate Python
modules, rather than in a single one as we have here.

1 from hamilton import base , driver

2 import my_dataflow_functions

3 config = {"region": "US", ...}

4 adapter =base.SimplePythonGraphAdapter(base.DictResult ())

5 dr = driver.Driver(config , my_dataflow_functions ,

6 adapter=adapter) # augment driver with adapter

7 results = dr.execute (['ts_model ', 'forecast '])

8 save_blob(results["ts_model"],

9 config["model -artifact -location"])

10 save_df(results["forecast"], config["forecast -location"])

Listing 4: Driver code: shows how to execute the dataflow in
a single step.

1 ## Step (1) in your orchestration system

2 from hamilton import driver

3 import my_dataflow_functions

4 config = {"region": "US", ...}

5 dr = driver.Driver(config , my_dataflow_functions)

6 df = dr.execute (['year', ..., 'acquisition_cost ', ...])

7 save_df(df, config["train -data -loc"]) # saves data

8

9 ## Step (2) in your orchestration system. They are

10 ## linked together by the materialized data set

11 from hamilton import base , driver

12 import my_dataflow_functions

13 import loader

14 config = {"region": "US", ...}

15 data_set = loader.load_data(config["train -data -loc"])

16 adapter =base.SimplePythonGraphAdapter(base.DictResult ())

17 dr = driver.Driver(config , my_dataflow_functions ,

18 adapter=adapter)

19 results = dr.execute (['ts_model ', 'forecast '],

20 overrides ={"data_set": data_set })

21 save_blob(results["ts_model"],

22 config["model -artifact -location"])

23 save_df(results["forecast"], config["forecast -location"])

Listing 5: Driver code: shows how one would execute the
dataflow in two discrete steps, requiring the materialization
of output from the first, and passing it back into the second.

1 from hamilton import base , driver

2 from hamilton.experimental import h_ray

3 import my_dataflow_functions

4

4 import ray

5

6 ray.init() # connect/start cluster

7 config = {"region": "US", ...}

8 rga = h_ray.RayGraphAdapter(# adapts DAG traversal

9 result_builder=base.DictResult ())

10 dr = driver.Driver(config , my_dataflow_functions ,

11 adapter=rga) # augment driver with adapter

12 results = dr.execute (['ts_model ', 'forecast '])

13 save_blob(results["ts_model"],

14 config["model -artifact -location"])

15 save_df(results["forecast"], config["forecast -location"])

16 ray.shutdown () # shutdown connection/ray

Listing 6: Driver code: shows scaling the dataflow onto a
system such as Ray by augmenting the driver.

As can be seen in Listing 3, each data transformation is neatly
encapsulated within a function. Some functions have decorators,
and it should be straightforward to understand what they are doing.
One can attach metadata and data expectations as desired, without
cluttering the dataflow definition. See Figure 1 in the Appendix for
an example execution rendering that Hamilton created. To add/up-
date the dataflow is straightforward. For example, if one wanted to
evaluate the fit time-series model, then one only needs to define a
new function, name it, and request the right input arguments.

To execute the dataflow, one just needs to specify what results
to compute, and provide the driver the right inputs. For example, to
go from a single step (Listing 4), to a two step (Listing 5) workflow,
one just needs to change specification of the desired output, and
provide the requisite input. This gives the user a lot of flexibility
to compose their workflow as desired; no transform logic needs to
change.

Similarly, with Listing 6, a user does not have to change their
transformation logic to take advantage of scaling out onto Ray;
they only need to change a few lines of driver code. The code to
add support for a framework like Ray is minimal, see Listing 7 in
the Appendix.

4.6 Benefits of Hamilton
We have found the following benefits when using Hamilton.

4.6.1 Incremental Development. As dataflows are composed of dis-
crete, unit-testable components, modifications to produce new data
can be started locally by conducting test-driven development on the
function itself. As node execution only requires running upstream
dependencies, integrating with the full dataflow is straightforward.
The user need only request computation of the new node via the
Hamilton driver to integration test the new addition.

4.6.2 Debugging. One can isolate bugs methodically by determin-
ing the erroneous output, finding the same-name function defini-
tion, debugging that logic, and if no error is found, repeat, tracing
through each upstream dependency. For example, to debug spend_b
from our contrived example (listing 3), it is easy to visualize its
execution path, e.g. Figure 1 in the Appendix, and thus determine
what needs to be debugged.

4.6.3 Central Definition Store. To leverage feature engineering
work, most industry solutions target materialized data, e.g. [2],
rather than the code itself. With Hamilton, module organization

is incentivized, and thus curating modules into a single repository
makes it straightforward for a team to refer to and reuse work.

4.6.4 Transparent Scaling. Most distributed computation frame-
works follow a lazy execution model e.g. Dask, Ray, and Spark. They
build a DAG of the computation required prior to distributing exe-
cution. As Hamilton’s function DAG is structured using the same
approach, it can provide a layer of indirection between dataflow
definition and method of execution. In practice, this means that
most Hamilton functions do not need modification to run on these
distributed computation systems, unless the data type they operate
over is not supported by that system. For example, both Spark and
Dask implement the Pandas dataframe API, so a user would not
have to change their Pandas code to scale to a Dask or Spark cluster,
other than changing how they load data for execution.

4.6.5 Lineage. Hamilton unlocks the ability to provide fine grained
lineage of computation for any workflow, and together with source
code version control (e.g. git), a lightweight means to store it. This
is important, especially with the growth of privacy concerns and
data regulation, as organizations need to know what data comes
in, where it goes, and how it is used. To facilitate that, Hamilton
functions can be marked with privacy & regulation concerns, e.g.
Personally Identifiable Information (PII), so one can surface an-
swers to questions of data usage and data impact by examining the
structure of the produced DAG. To store lineage for a materialized
artifact, one only needs to snapshot (e.g. commit via git) the source
code, driver script, and configuration that created the DAG. To
recover the lineage, one need only go back to that snapshot and
re-instantiate the DAG to ask questions of it.

4.6.6 Modular Components. The function-based nature of Hamil-
ton (see 4.1.6) enables clear decoupling of operational components
from user DAG specification (see 4.2, listing 3). It is straightforward
to add, replace, and improve such components (data quality or del-
egating execution for example), while keeping the users’ business
logic static, because the underlying assumption is that everything
is a function. This greatly reduces the friction for platform teams
and data scientists to operate independently of one another.

4.7 Evaluation Discussion
4.7.1 Adoption. To enjoy the benefits of Hamilton, one must use
the paradigm. For existing systems, migration has been the largest
friction point to adopting Hamilton. Internally, teams with active
feature development for time-series forecasting have been the best
adopters. Externally (since October 2021), teams using Pandas and
wanting to improve software engineering hygiene have been Hamil-
ton’s best adopters.

4.7.2 Quantitative measurement. Hamilton’s focus is on improving
the user experience, and not improving execution of a dataflow.
So a quantitative assessment of Hamilton’s benefits to a team is
challenging. One would have to construct a tightly controlled user
experiment, however in an industry environment, it’s hard to secure
resourcing for such an endeavor. That said, anecdotally, for one
data science team, a monthly feature engineering task to add and
adjust features for model fitting used to take a whole day for a team

5

member to complete prior to Hamilton. After Hamilton, this task
takes no more than two hours, which represents a 4x improvement!

4.7.3 Qualitative measurement. The success criteria for the Hamil-
ton project were all qualitative measures. Namely, that a core data
science team adopted the tooling, enjoyed using it, and were able
to deliver on their business objectives. On all accounts, Hamilton
delivered successfully, without any detractors. Since then, two and
a half years in production have passed and the same qualitative
measures still hold.

5 FUTURE EXTENSIONS/AVENUES
Here are some select future directions.

5.1 Data Governance Integrations
With Hamilton one can encode a rich repository of metadata (see
4.6.5), however currently, the exposure of this information requires
querying theDAGdirectly.With the ability to providemodular oper-
ational functionality, at DAG definition or execution time, Hamilton
can integrate with existing governance tooling. For example, run
time integrations with tools like open lineage[9] or datahub[10] are
possible. Similarly, Hamilton could be used as a conduit to enforce
data access policies, since dataflow definition and execution are
decoupled.

5.2 Compiling to an Orchestration Framework
A common problem with ETL tooling is choosing an orchestration
system. This is a big decision, because companies rarely change
this infrastructure. Because Hamilton functions do not define or
set materialization concerns, it cannot be used in place of an or-
chestration framework such as Airflow[6], where computation is
split into discrete steps and materialized to a data store in between
steps. If one were to provide node groupings and a materialization
function, then it would be straightforward to compile the Hamil-
ton function DAG onto any existing framework. Programmatically
defining orchestration would also unlock the possibility for low
cost infrastructure migrations, while also avoiding vendor lock in.

5.3 Logically Modeling your Data Warehouse
Common industry data tools (e.g.[8]) and orchestration frameworks
leak materialization concerns into the user experience. For example,
using SQL, the user has to think in tables. This thinking naturally
cascades to how data is materialized and transferred between work-
flow steps. What if, instead, you could model the dependencies
of all your data transforms independently of how and where the
data is stored? The declarative nature of Hamilton unlocks this
possibility. Having such a fine grained model of dataflows in a data
warehouse opens the door to exploring global optimizations for
workflow execution and data materialization.

5.4 High Performance Computing
With the rise of large machine learning models, GPUs and super
computers are getting renewed interest. However, writing code
for GPUs or super computers requires specialized knowledge to
capitalize on such powerful hardware. Python efforts to make this
easier on the user generally revolve around frameworks that make

use of decorators[3, 13] to wrap Python code and "compile" it for
their target. Because Hamilton naturally forces all logic to be writ-
ten as functions, injecting these frameworks could be done at DAG
creation/walk time. This would enable a quick way to get up and
running with such frameworks, or better yet, swap them out triv-
ially without having to change much (if any) transform logic.

6 SUMMARY
Hamilton is a novel open source tool that prescribes a declarative,
high level paradigm for defining dataflows in python. It enables de-
coupling transform definitions from execution and materialization
which yields many beneficial properties for creating, managing, and
executing data or machine learning transformations. It started at
Stitch Fix to address a data science team’s developer experience, and
has since been extended to cover wider concerns with lineage, scal-
ability, portability, and data quality. It creates an opinionated user
experience for those writing transformation logic, while provid-
ing a platform team enough abstractions to modularize underlying
data management systems, resulting in little to no effort from the
transformation logic owner to adopt/migrate when changes occur.

The horizon is bright for Hamilton, as the project looks to further
expand integration types as well as integration implementations
with a wider set of data management tooling. Come join us.

REFERENCES
[1] Eric Colson. 2019. Beware the data science pin factory: The power of the full-

stack data science generalist and the perils of division of labor through function.
https://multithreaded.stitchfix.com/blog/2019/03/11/FullStackDS-Generalists/

[2] Theofilos Kakantousis, Antonios Kouzoupis, Fabio Buso, Gautier Berthou, Jim
Dowling, and Seif Haridi. 2019. Horizontally scalable ml pipelines with a feature
store. In Proc. 2nd SysML Conf., Palo Alto, USA.

[3] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A LLVM-Based
Python JIT Compiler. In Proceedings of the SecondWorkshop on the LLVMCompiler
Infrastructure in HPC (Austin, Texas) (LLVM ’15). Association for Computing
Machinery, New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/
2833157.2833162

[4] PhilippMoritz. 2019. Ray: A Distributed Execution Engine for theMachine Learning
Ecosystem. Ph.D. Dissertation. EECS Department, University of California, Berke-
ley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-124.html

[5] Stefan Krawczyk, Elijah ben Izzy, Danielle Quinn. 2021. A scalable general purpose
micro-framework for defining dataflows. https://github.com/stitchfix/hamilton

[6] Various. 2015. Apache Airflow. https://github.com/apache/airflow
[7] Various. 2016. Dask: Library for dynamic task scheduling. https://dask.org
[8] Various. 2016. DBT. https://github.com/dbt-labs/dbt-core
[9] Various. 2017. Open Lineage. https://openlineage.io/
[10] Various. 2020. Datahub. https://github.com/datahub-project/datahub
[11] Various. 2020. Metaflow. https://github.com/Netflix/metaflow
[12] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das,Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016.
Apache Spark: a unified engine for big data processing. Commun. ACM 59,
11 (2016), 56–65. https://doi.org/10.1145/2934664

[13] Alexandros Nikolaos Ziogas, Timo Schneider, Tal Ben-Nun, Alexandru Calotoiu,
Tiziano De Matteis, Johannes de Fine Licht, Luca Lavarini, and Torsten Hoefler.
2021. Productivity, Portability, Performance: Data-Centric Python. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (St. Louis, Missouri) (SC ’21). Association for Computing
Machinery, New York, NY, USA, Article 95, 13 pages. https://doi.org/10.1145/
3458817.3476176

6

https://multithreaded.stitchfix.com/blog/2019/03/11/FullStackDS-Generalists/
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-124.html
https://github.com/stitchfix/hamilton
https://github.com/apache/airflow
https://dask.org
https://github.com/dbt-labs/dbt-core
https://openlineage.io/
https://github.com/datahub-project/datahub
https://github.com/Netflix/metaflow
https://doi.org/10.1145/2934664
https://doi.org/10.1145/3458817.3476176
https://doi.org/10.1145/3458817.3476176

Figure 1: Example rendering showing what would be
executed by running Listing 4, by exercising visual-
ize_execution() on the driver. Note: (1) that the check_output
decorator produces extra nodes during computation; (2): UD
stands for user defined input and would be required to be
passed for the DAG to be executed.

A EXAMPLE EXECUTION RENDERING

B GRAPH ADAPTER CODE TO SUPPORT A
FRAMEWORK SUCH AS RAY

7

1 class RayGraphAdapter(base.HamiltonGraphAdapter , base.ResultMixin):

2 """ Class representing what's required to make Hamilton run on Ray"""

3

4 def __init__(self , result_builder: base.ResultMixin):

5 """ Constructor

6 :param result_builder: Required. An implementation of base.ResultMixin.

7 """

8 self.result_builder = result_builder

9 if not self.result_builder:

10 raise ValueError('Error: ResultMixin object required. Please pass one in for `result_builder `.')
11

12 @staticmethod

13 def check_input_type(node_type: typing.Type , input_value: typing.Any) -> bool:

14 """ Used during DAG execution - user inputs to the DAG are checked against function expected types."""

15 # NOTE: the type of a raylet is unknown until they are computed

16 if isinstance(input_value , ray._raylet.ObjectRef):

17 return True

18 return node_type == typing.Any or isinstance(input_value , node_type)

19

20 @staticmethod

21 def check_node_type_equivalence(node_type: typing.Type , input_type: typing.Type) -> bool:

22 """ Used during DAG construction - logic for ensuring types match between functions."""

23 return node_type == input_type

24

25 def execute_node(self , node: node.Node , kwargs: typing.Dict[str , typing.Any]) -> typing.Any:

26 """ Function that is called as we walk the DAG to determine how to execute a Hamilton function.

27

28 :param node: the node from the graph.

29 :param kwargs: the arguments that should be passed to it.

30 :return: returns a ray object reference.

31 """

32 return ray.remote(node.callable).remote (** kwargs)

33

34 def build_result(self , ** outputs: typing.Dict[str , typing.Any]) -> typing.Any:

35 """ Builds the result and brings it back to this running process. Analogous to a "reduce" step.

36

37 :param outputs: the dictionary of key -> Union[ray object reference | value]

38 :return: The type of object returned by self.result_builder.

39 """

40 # need to wrap our result builder in a remote call and then pass in what we want to build from.

41 remote_combine = ray.remote(self.result_builder.build_result).remote (** outputs)

42 result = ray.get(remote_combine) # this materializes the object locally

43 return result

Listing 7: GraphAdapter code: shows what’s required to support an integration with the Ray framework. The key functions are
execute_node() and build_result(). See function documentation strings for an explanation of each.

8

	Abstract
	1 Introduction
	2 Current ETL approaches
	3 Hamilton Requirements
	4 Hamilton Framework
	4.1 Hamilton Functions
	4.2 Advanced Hamilton Functions
	4.3 The Function DAG
	4.4 Driver Code
	4.5 A Hamilton Example
	4.6 Benefits of Hamilton
	4.7 Evaluation Discussion

	5 Future Extensions/Avenues
	5.1 Data Governance Integrations
	5.2 Compiling to an Orchestration Framework
	5.3 Logically Modeling your Data Warehouse
	5.4 High Performance Computing

	6 Summary
	References
	A Example Execution Rendering
	B Graph Adapter Code to support a framework such as Ray

