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ABSTRACT
SQL interfaces have been independently built both for big data
stream and batch processing systems. However, semantically there
is an impedance between these two worlds. Streaming systems
favor evolution and change while batch systems have historically
been designed for write once read many. It is common for schemas
to evolve in a streaming system overtime meaning that they have
developed different approaches for storing metadata. We describe
how we resolved one aspect of this semantic gap by storing and
updating metadata in a single system and enabling the use of this
unified metadata structure to run streaming and batch queries
within the same commercial cloud SQL service. The transparent
unification of batch and stream metadata catalogs is, as far as we
are aware, novel.

1 INTRODUCTION
The scope of this work is a commercial cloud-based data process-
ing system designed for data analytics on structured data. Typical
use-cases include long-running queries to compute aggregated or
statistical values across groups of records. These queries operate
on data sets that are divided into records with a common schema.
The service is a "BigData system" where data is stored on storage
systems that are separate from the processing systems. This de-
coupling enables the processing of data sets from various sources
stored in different formats.

For static data, a common pattern is a batch query where data
sets are read and processed into a single result data set that is stored
back onto the storage system. A classic example is a transfer job that
reads data from operational data sources ("system-of-records"), de-
normalizes the data, and stores the result in a data analytic systems
("system-of-insights").

Often, data is available as a continuous stream of records. For
example, by continuously streaming records from operational data
sources into analytic systems, insights on the data becomes avail-
able much more quickly than when having to wait for the next
periodic batch query. In other cases, data is produced as a stream at
the source, for example by sensors that periodical transmit a stream
of measurements. In this context, stream processing is therefore
often also called real-time processing.
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SQL is firmly established as a generic data query language for
structured data. This paper describes an approach that supports
both batch queries as well as stream queries on top of an SQL-
based data processing system. Our contribution covers the control-
and management layer of an existing cloud-based data processing
system that was initially designed for batch queries. Our work
seamlessly integrates stream data sources into the system such that
the same SQL interface can be used to formulate stream queries
as well as batch queries. In addition, data from streams and batch
sources can be joined together in the same query.

A stream is a continuous sequence of records. Stream queries
differ from batch queries in that:

• A stream query nominally runs for an indefinite amount of
time and continuously produces a stream of results.

• The processing system must allow for schema evolution if
the structure of the records in a stream changes while the
query is running.

• Aggregating, grouping and joining of data have a different
semantic in streams queries than in batch queries.

The following sections describe how we integrate stream queries
into an existing batch query processing system. We also address the
issue of schema changes and the effect on running queries. The final
section outlines future extensions on how to address the semantic
differences for aggregation, grouping and join functions in stream
and batch queries, respectively.

2 RELATEDWORK
Initially, Hadoop proposed Map/Reduce as the preferred way of
processing big data, but because of the ubiquity of SQL the com-
munity developed the Apache Hive system for executing SQL on
Hadoop [15] via the dynamic creation of Map/Reduce jobs. The
Hive processing engine was made redundant by other SQL/Hadoop
systems such as Impala [10], BigSQL [7], and Presto [8]. However,
the component of Hive for storing metadata — the Hive Meta Store
(HMS) — is still used by all of those systems. HMS stores the tech-
nical metadata, e.g. the table schemas, as well as other metadata
such as the format of the data, the location on the storage system,
the partitioning strategy etc. The SQL engine obtains all necessary
metadata from the HMS and then generates and executes the query
plan with its own specific technology.

Apache Kafka [12] has become one of the basic substrates for
stream processing, playing a role analogous to the Hadoop file sys-
tem in batch processing. Apache Kafka uses a publish/subscribe
semantic for distributing messages but a log capability for storing



them. Plain Kafka supports at-least-once delivery semantics. Mes-
sages in logs may be retained for a specific amount of time or until
they are replaced by a more recent message with the same key.

The lambda architecture [13] is an attempt to unify the two
worlds of stream and batch processing where the same data is
processed by a batch processor and a stream processor. The batch
process computes highly accurate results with some delay while
the stream processor is producing time-critical output. A serving
layer combines the two outputs again.

The kappa architecture [11] simplifies lambda by moving all
processing on top of streams. Kafka Streams [2] follows the kappa
design. It is a library and API for stream processing. Applications
define a topology of stream processors that operate on data streams.
Source processors continuously read input data streams from Kafka
topics and sink processors write the end result into Kafka topics.
Kafka Streams standardizes a specific representation of a relational
table called a KTable. Each message corresponds to an operation on
a relational table row. KTables assume that the table has a primary
key, i.e. that every row can be uniquely identified.

ksqlDB [1] builds on Kafka Streams to offer an SQL interface for
interactive querying of data stored in topics. ksqlDB extends SQL
with support for windows — bounded segments of the stream that
change as the stream advances. Windows are often time based, e.g.
the data received during the last hour. ksqlDB uses windows both
for aggregation and join operations across multiple streams and
KTables. Data from batch sources such as relational database tables
first need to be converted into a stream before ksqlDB can process
them.

Our work differs from ksqlDB in that we do not require the
conversion of batch sources into streams to allow a static data set
and a stream to be combined within a query.

3 APPROACH OVERVIEW
The SQL Service that we extended is IBM’s Cloud Data Engine [4].
This is offered by IBM as a support for cloud based data lakes.
The systems offers both functionality for ingestion and querying.
The query system is built around Apache Spark. It allows ANSI
SQL query and is stateless. It supports multiple different formats
including CSV, JSON and Parquet. The charging model is pay-per-
query. IBM Identity and Access Management and IBM Key Protect
is used to control access to data.

The main components of the system are schematically shown in
Figure 1. Queries are formulated in the SQL console and handed
over to the service API and job handler. The service API parses the
query and checks the syntax using the table’s schema definition
from the metastore. The job handler then generates code that it
passes to the SQL execution engine, which then processes the input
data sets and produces a result set.

In the batch-only solution, the table definition in the metastore
describes static data residing in a storage system such as a dis-
tributed file system or an object store. We extend the description to
tables backed by structured streams, made available from streaming
platforms. We also extend the SQL syntax for stream queries to
use the EMIT keyword to define where the resulting stream data

Figure 1: System Schematics

is stored. Finally, the job handler is extended to generate the cor-
responding stream processing code which is then executed by the
processing engine.

For stream-backed tables, the metadata consists of connection
information to the stream platform and a description of the stream’s
structure. The schema of stream records may change over time. The
metastore must therefore keep track of schema evolution as change
happens. Depending on the data serialization format used in the
stream, schema information is either encoded in every record, e.g.
when using Json, or externally in a schema registry for formats such
as Avro or Protobuf. In our approach, we assume a schema registry
and place a proxy between stream producers and the registry. This
registry proxy observes the control flow from the stream producers
to the schema registry and uses this information to create and
update table definitions in the metastore.

Figure 2: Stream Query

Figure 2 gives a high-level overview of the components that are
involved in processing a stream query. The components in grey
depict part of the core SQL service whereas the white components
belong to different services or custom components. In particular,
the schema registry that manages stream metadata is not part of
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the core SQL service. This leads to a design where the metastore
is the only source of metadata in the SQL service and the registry
proxy guarantees that metadata from all schema registries is made
available in the metastore.

4 IMPLEMENTATION DESCRIPTION
Our work extends an existing cloud-based SQL-as-a-Service system.
Metadata, i.e. table descriptions, is stored in Apache’s Hive meta-
store. Apache Spark [5] is used as the processing engine for both
batch- and stream-processing. Static data sets are stored mainly in
cloud object stores and relational databases, whereas data streams
are managed by Kafka [12].

4.1 Metastore and Catalog Management
The Hive metastore is used for catalog management. It stores:

• table definitions containing schema information;
• the storage location of each table, e.g. the S3 bucket or the

topic name and Kafka cluster;
• the storage format, e.g. parquet;
• how the data is partitioned.

For static data sets, catalog management is not automatic. En-
tries in the Hive metastore are defined manually using Hive’s data
definition language. The schema information is extracted from the
underlying data. The following definition creates a table employees
in the metastore that is backed by a parquet file stored in a cloud
object store.

CREATE TABLE employees USING parquet LOCATION
s3://us -south/sql -query/employees.parquet;

Stream-backed tables are created automatically by the registry
proxywhenever the proxy intercepts a registration for a new stream.
In order to make a stream visible to the SQL query service, the
stream producer connects to the registry proxy instead of the origi-
nal schema registry. The registry proxy requires a few additional
configuration properties that are not part of the standard exchange
between the stream producer and the schema registry. Since schema
registries support custom fields, these properties are easily added
to the configuration of the stream producer. They include:

• the URL of the original schema registry, required by the
proxy;

• connection information for the Kafka cluster and Kafka
topic name, part of the stream’s metadata;

• optional table name if different from the topic name;
• encoding format of the stream, e.g. Avro;
• optional parameter that indicates the stream category and

controls the behaviour during query execution, see Sec-
tion 4.5.

Together with the schema information from the standard registry
exchange, the proxy has all the information that it needs to create a
table definition in the Hive metastore. The proxy guarantees consis-
tency between the schema registry and the Hive metastore in a fully
transparent way. Stream producers only require the aforementioned
configuration settings.

4.2 Stream Jobs and Query Execution
The service API parses and analyzes the SQL query that is entered
by a user on the web console or that arrives as a request from other
services. It then generates a code fragment for Spark’s Python
API [6]. Stream queries are recognized by the presence of the EMIT
keyword in the query and by stream specific property fields in the
table’s metadata. Multiple different categories of stream queries are
supported, as described in the following sections. For each stream
category, an implementation in Scala is made available as library
code in the Spark execution engine. The service API accepts the
query if it follows the pattern of a known category, otherwise the
query is rejected. For accepted queries, PySpark code is generated
that invokes the corresponding library code with the parameters
extracted from the query and the metadata store. The query is
then handed over to Spark for execution. The job handler observes
the execution and reports any errors back to the console or other
sources of the query. Stream queries execute as long as the stream
exists and they aren’t explicitly stopped, or until an unrecoverable
error occurs, such as an incompatible schema change.

4.3 Ingesting Stream Data
The first stream category supported by our implementation are
stream queries that use a Time Seriesmodel where each record in the
stream is independently processed. A frequent use case is a stream
of data that is ingested into a cloud storage system. These queries
are sometimes also called landing queries. The motivation is to
stream data from an operational source into an analytics system for
further batch processing. The landing query is a form of an extract,
transfer, and load process that filters, transforms, and stores the
records into a cloud-based data lake. An example is a sensor or edge
device that publishes Avro-encoded measurements into a Kafka
topic. The stream query consumes these messages from Kafka,
applies filters and transformations, and continuously stores the
resulting stream into, for example, a cloud object store. A landing
query for storing a stream of temperature readings into an object
store looks as follows:

SELECT temp , sensor_id FROM temperatures
EMIT INTO s3://us-south/sql -query/temps.parquet;

The temperatures identifier refers to a Hive table that has been
automatically created by the registry proxy when the temperature
sensor started publishing into the Kafka topic. The Hive metadata
contains the Avro schema definitions, and the Kafka connection
information which are necessary for the SQL query engine to read
the data stream.

4.4 Lookup Joins
The cloud SQL service offers a specific join between a stream and
one or more tables, called lookup joins. More general joins are
the topic of future work and discussed in Section 5. In lookup
joins, records are augmented with information from one or more
lookup tables. In the example query shown below, a stream of
sensor readings is augmented with additional information about
the sensors. Each record contains the id of the sensor that provided
the readings. Additional information about the sensor such as a
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name, the geographic location etc. are looked up from a table that
is available in an S3 bucket. The join then links the two sources of
information as the stream arrives using the sensor identifier as the
join key.

SELECT t.temp , t.created , s.name , s.geography
FROM temperatures AS t
JOIN s3://us -south/sql -query/sensors.parquet AS s
ON t.sensor_id = s.sensor_id
EMIT INTO s3://us-south/sql -query/temps.parquet;

4.5 Change-Log Streams
A Change Data Capture (CDC) [3] system such as Debezium [14]
observes the transaction log of a relational database and creates a
change-log stream. In a change-log stream, items are not simple
values in themselves but descriptions of how the source data has
changed. Also referred to as KTable, every stream message repre-
sents an insert, update or delete of a record. Records are uniquely
identified by a key.

From an algorithmic point of view the difference between the
time series category and change-log streams is that in the time
series model each item in the stream can be considered in isolation
and the result is written in append mode into the storage system.
A change-log model is stateful and messages with the same key
need to update the same record. Change-log streams can therefore
only be landed into cloud data-lakes if the target storage system
supports updates of previously written records, e.g. into a relational
database or a lake-house system such as Iceberg.

Figure 3 shows the schematics of a CDC pipeline. The CDC
system observes the transactions of an operational database and
translates the modifications that are executed on the database tables
into streams of change log events, one stream per table. Insert and
update operations on a record generate so called Upsert events
where a key identifies the record and a value part contains all of
the record’s data. For delete events, the key is sufficient to identify
the record that has been deleted and the value part is empty. The
query engine interprets these events and executes the appropriate
insert, update, or delete operations on the mutable analytics store
where the stream is landed.

When querying a stream, the query engine needs to know both
the structure of the items and the type of streaming model being
used. By default, a time-series model is assumed where items in the
stream aren’t consolidated. This can also make sense for streams
containing change events if it is important to keep a record of pre-
vious changes. The category of a stream, and thus its interpretation,
can be set as a property in the table description, either as a custom
attribute in the stream producer or via an ALTER TABLE statement
that modifies the content of the Hive metastore.

4.6 Schema Evolution
Queries on data streams are long-running operations where the
structure of the data may change over time. For example, a column
might be added to a table in the relational database from which
changes are being streamed. The SQL query system keeps track of
schema evolution and updates the table definition in the metastore
accordingly. This enforces that new queries have all the schema

Figure 3: Change Log

information available that they need and, more importantly, that
running queries continue to run on compatible schema changes. In
Avro, it is a technical necessity that data from the stream can only
be correctly interpreted when the writer’s schema, i.e. the schema
with which data is written, is available for de-serialization. The
reader’s schema is the structure used by the query.

When a stream is initially defined, the writer’s and reader’s
schema are the same. They diverge if the structure of the source
changes and the stream producer registers a new writer’s schema
in the schema registry. The registry proxy adds this new schema to
the Hive metastore before the producer starts publishing data in the
new format. As soon as the query execution engine encounters an
event with an unknown schema, it refreshes its schema cache from
the Hive metastore as shown in Figure 4. If the schema change is
forward compatible with the existing reader’s schema, then the new
data is mapped into the existing reader’s schema. For example, the
addition of a new column is compatible as it can simply be ignored
when copying data into the reader’s schema. Nothing changes from
the query’s points of view and the query continues to execute as
before.

Figure 4: Schema Evolution
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If the new writer’s schema is incompatible with the existing
reader’s schema then the query cannot continue without change.
Examples of incompatible schema changes include:

• Changing the type of an existing field in an incompatible
way, for example changing a numerical field to a text field.

• Allowing null values for a field that previously didn’t allow
nulls.

• Removing a field for which no default value is defined.
The user can specify the preferred behavior when an incompatible
schema change occurs. By default the query stops and the query
owner is notified. The user can then reformulate the query using
the new schema and restart it.

As an alternative, stream producers can be prevented from in-
compatible schema changes. In this setting, the registration of in-
compatible schemas fails whenever a producer attempts to publish
records with an incompatible schema.

5 FUTUREWORK
Future works includes support for more generic join operations.
These joins are only feasible if they operate on well-defined subsets
of the involved streams. A stream subset is traditionally called a
window [9]. The lookup join described in Section 4.4 can be seen
as a special case of generic stream joins where an individual record
of the stream is matched against the finite number of records of the
lookup table, i.e. a join with an implicit window of size 1.

In a more generic approach, a window is explicitly defined for
each stream involved in a join. The window slides across the stream
as the stream progresses. Windows have a width and a sliding prop-
erty. These can be defined based either on time or on volume. For
example, a time-based sliding window may cover all the messages
received in the last hour and it is advanced every 10 minutes. A
volume-based definition defines both window-width and sliding
property through the number of messages, e.g. a window contain-
ing the last 1000 messages received that is advanced every 100
messages. Windows are also required as the basis for aggregation-
and grouping functions on streams.

A join on streams is then decomposed into a series of "sub-joins"
on the data contained in the corresponding windows. Each time a
window slides ahead, the sub-join is executed again and the result
is emitted and appended to the result set. As a window slides along
a stream, it may overlap with its predecessor window, causing
duplicates.

The design of the SQL service allows a straight forward extension
to more generic join operations on stream. The SQL dialect needs
to be equipped with additional keywords that allow for the defi-
nition of time- and volume-based sliding windows. This requires
extensions in the SQL parser that is part of the service API and job
handler. The implementation of generic joins is simplified by the
fact that Spark already supports stream-to-stream joins.

6 CONCLUSION
We have shown how we have extended an existing commercial
cloud SQL service to allow queries to transparently include both
static data stored in the cloud and streams of data arriving from
external systems. Our implementation uses the Hive metastore as a
single location for storing all the metadata required to support these

hybrid queries. Streaming sources uses standard schema registries
to store their metadata and these are dynamically and transparently
integrated into Hive without the sources having to be altered in
any way. Queries can then combine tables backed by streaming
and batch sources within the SQL service. We have described how
we handle the schema evolution of streaming sources and have
discussed the different semantics that one can give to streaming
queries showing how we currently support various types of joins
over streams and batch sources.
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