
Assembling aQuery Engine From Spare Parts
Mosha Pasumansky

Firebolt Analytics
moshap@firebolt.io

Benjamin Wagner
Firebolt Analytics

benjamin.wagner@firebolt.io

ABSTRACT
Building a new cloud data warehouse is a daunting challenge, re-
quiring massive investments into both the query engine and sur-
rounding cloud infrastructure. Given the mature space, it might
seem like a Herculean task to enter the market as a small startup.

At Firebolt we assembled a working, high-performance cloud
data warehouse in less than 18 months. We achieved this by build-
ing our query engine on top of existing projects and then invest-
ing heavily into differentiating features. This paper presents our
decision-making and learned lessons along the way.

1 INTRODUCTION
Firebolt is a modern cloud data warehouse built to support user-
facing, data-intensive applications [12]. These workloads are chal-
lenging, as users expect queries to return in tens of milliseconds.
Additionally, user-facing applications can have thousands of simul-
taneous users and queries. They exhibit many queries-per-second
(QPS), as well as high concurrency.

Building a database management system is hard, as it consists
of multiple complex components. These include a query engine,
storage engine, transaction manager, and a system catalog. This
challenge is amplified when building a cloud data warehouse, as it
adds additional layers of complexity to the system. This includes
cloud platform infrastructure, cloud storage management, SaaS
components, and much more. This is exemplified in Figure 1, pre-
senting Firebolt’s high-level architecture.

All of these components are necessary even for a barebones
system. On top of that, significant engineering effort needs to be
invested to build out differentiating features.

Even for a large team, building such a system from scratch would
take multiple years. At Firebolt, we were able to launch our cloud
data warehouse for real customers running production workloads
in under 18 months. In order to achieve this, we assembled Firebolt
frommultiple existing components.While some only required small
modifications, others were used as a starting point and ended up
changing significantly.

This paper presents how we assembled our high-performance
query engine from existing components. It is structured as follows.
Section 2 focuses on the decisions made while building out the
engine itself. Afterwards, Section 3 describes how we leverage
open-source tools in order to continuously test our query engine.
We summarize our lessons learned in Section 4 and conclude in
Section 5.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License and appears in CDMS 2022, 1st International Workshop on Composable Data
Management Systems, September 9, 2022, Sydney, Australia.

Figure 1: The high-level architecture of the Firebolt cloud
data warehouse. Firebolt revolves around the concept of en-
gines. An engine in Firebolt provides a set of isolated com-
pute resources. The nodes of an engine run the parser, plan-
ner, runtime, and storage engine. Our ecosystem integra-
tions communicate with engines through SQL. Surrounding
services provide essential functionality such as infrastruc-
ture provisioning and metadata management.

2 QUERY ENGINE
This Section outlines the open-source building blocks used to as-
semble our query engine. The design of Firebolt’s engine follows a
textbook separation of components [21].

Our SQL parser accepts Firebolt’s SQL dialect and converts the
user query into an abstract syntax tree (AST). The logical planner
then transforms this AST into a logical query plan (LQP). To achieve
this, it uses logical metadata such as table and view definitions, data
types, and the function catalog. The planner then applies logical
transformations to produce an optimized LQP. Sections 2.1 and 2.2
present how we chose an existing project as a foundation for these
components at Firebolt.

Afterwards, Firebolt’s physical planner constructs a distributed
query plan (DQP) from the LQP. To achieve this, it uses physi-
cal metadata such as the existence of indexes, table cardinalities,
and data distribution. Our distributed runtime orchestrates the
execution of the DQP across a cluster of Firebolt nodes. The respon-
sibilities include scheduling, data exchange between stages, and
query fault tolerance. Finally, the local runtime executes relational
operators within a single Firebolt node. Section 2.3 outlines how
we decided on an existing project to lay the foundations for our
runtime.



Mosha Pasumansky and Benjamin Wagner

We also present some of the engineering challenges encountered
when basing the planner and runtime on existing projects. Section
2.4 shows how communication between the planner and runtime
evolved over time. Our push towards a custom-built distributed
runtime is outlined in Section 2.5.

2.1 SQL Dialect
Cloud data warehouses do not exist in a vacuum – they are part
of a wider data ecosystem. This ecosystem encompasses tools for
ETL/ELT, BI, reporting, data science, ML and data observability.
Examples include Fivetran, Dbt, Tableau, Looker and Monte-Carlo.
This is outlined in Figure 2. As users build their applications on
top of these tools, having extensive integrations with the wider
ecosystem is critical to Firebolt’s success. After all, nobody wants a
cloud data warehouse with no tools that can talk to it!

Figure 2: As a cloud datawarehouse, Firebolt has to integrate
with the wider ecosystem.

Fortunately, all of the above tools talk to the data warehouse
using SQL. This greatly simplifies integrating with the ecosystem.
Challenges remain nevertheless. Despite the existence of the ANSI
SQL standard, virtually every database features its own SQL dialect.
As a result, the above tools require a variety of custom drivers,
connectors and adaptors to support different database systems.

To be a successful startup within the cloud data warehousing
space and to satisfy customers, integrating with the ecosystem from
day one is essential. As a small startup, Firebolt cannot expect large
companies behind ecosystem tools to spend time and resources
dedicated to adding support through custom connectors and drivers.

To ease ecosystem integration, we decided that the Firebolt SQL
dialect should be similar to an existing, widely adopted SQL dialect.
Choosing the Postgres dialect as the north star was an easy choice.
It is hugely popular and highly compliant with standard ANSI SQL.
Almost every tool in the data stack supports Postgres SQL as a
result.

It is important to note that being compatible with Postgres SQL
does not necessitate being compatible with the Postgres wire proto-
col [19]. Our drivers communicate with Firebolt through a custom
HTTP-based REST protocol.

2.2 SQL Parser and Planner
As outlined in the previous section, it was a requirement for Fire-
bolt’s SQL parser to be very similar to Postgres SQL. It has to fully
cover DDL, DML, and DCL statements. However, support for DQL

(i.e. SELECT) statements is the most important, as they make up
the bulk of the workload.

We wanted to base the logical planner on an existing project
meeting a broad set of requirements. The planner needed to support
the most important rules in modern data warehousing, such as
predicate pushdown and subquery decorrelation. As part of this,
the project needed to also have an extensible framework for rule-
based transformations. This would allow us to easily add Firebolt
specific rules as we scaled the product.

In addition to rule-based transformations, the planner needed
to support cost-based join reordering. This includes allowing us to
build custom statistics sources and cost models. This is especially
important given the variety of different index types supported by
Firebolt. For example, we use sparse primary and secondary in-
dexes for data pruning, as well as specialized indexes for frequently
occurring broadcast joins [24].

Finally, the planner needed to support composite data types
such as arrays and row (struct) types. These are popular for the
user-facing, data-intensive applications targeted by Firebolt.

It is possible to pick different projects as the baseline for the
parser and planner, respectively. However, these two components
share a very complex interface: the AST of a query leaving the
parser and entering the planner for semantic analysis. We decided
to give preference to projects that include both a parser and a
planner.

Luckily, there are a variety of open-source projects that we were
able to consider as a basis for Firebolt’s SQL parser and planner.
These are outlined in the following.

Postgres Parser. Using the Postgres parser directly would have been
the obvious choice given our desire to be compliant with Postgres
SQL. This approach has been used successfully in multiple other
systems [8, 20]. Isolating the parser from the Postgres code has
been done by the libpg_query project1. It packages the original
C-based Postgres parser in a library [13].

While this makes it reasonably easy to build a system on top of
the Postgres parser, it is difficult to isolate the planner code without
bringing in the rest of the large Postgres codebase. For us, this
meant that while going with Postgres would require almost no
investment in the parsing layer, it would require significant effort
to build a production-grade planner that meets our needs.

ZetaSQL. ZetaSQL is a parser and analyzer from Google2 built
in C++. It is an open-source port of GoogleSQL [23]. GoogleSQL
powers the cloud products BigQuery [17], Spanner [3] and Dataflow,
as well as the Google internal products Dremel, F1 [22], and Procella
[7]. It is a cleanly built, extensively tested, and production-ready
system.

However, ZetaSQL provides an opinionated dialect that disagrees
with Postgres SQL in many basic features. Additionally, ZetaSQL
only supports rudimentary transformations and no feature-rich
planner.

Calcite. Apache Calcite is a framework that provides query process-
ing, optimization, and query language support for data processing

1https://github.com/pganalyze/libpg_query
2https://github.com/google/zetasql

https://github.com/pganalyze/libpg_query
https://github.com/google/zetasql


Assembling aQuery Engine From Spare Parts

systems [4]. It includes parsers for multiple SQL dialects and a mod-
ular and extensible query planner with support for pluggable rules.
Calcite is well-built and battle tested. It is used in many high-profile
open-source systems such as Apache Hive, Apache Storm, Apache
Flink, Druid, and MapD3.

Compared to the other alternatives we considered that are writ-
ten in C++, Calcite is implemented in Java.

DuckDB. DuckDB is an in-memory, in-process analytical database
system originating from CWI [20]. It is extensively tested and
widely used for interactive data analysis. DuckDB’s query planner
supports both rule-based optimizations and cost-based join reorder-
ing. DuckDB uses the libpg_query project as a baseline for their
parser, providing Postgres SQL complicance. Nowadays, DuckDB
ported its parser over to C++ 4.

At the time we decided on a project to base our parser and
planner on, DuckDB was significantly less mature than it is today.

Hyrise. Hyrise is an in-memory database developed at HPI [11]. It
has a relatively simple code base, making it easy to refactor and
extend. Similar to DuckDB, it supports rule-based optimizations
and cost-based join reordering.

However, as an academic project, Hyrise is not battle tested and
does not have extensive SQL coverage.

We decided early on that we wanted planner and runtime to be writ-
ten in the same programming language. We do not think that this is
a hard requirement when building a new system. There are multiple
successful systems with JVM-based planners and high-performance
runtimes written in C++ [5, 10]. Nevertheless, we believe that the
engine being written in one language allows us to have high ve-
locity as a startup. A lot of work in database systems happens at
the intersection of planner and runtime. This is especially true for
Firebolt, as we had to integrate both components originating from
different open-source projects. Planner and runtime being written
in the same programming language makes it easy for developers
to work across the stack with minimal context switching. As we
decided on a runtime written in C++, we wanted the planner to
follow suit. This left us with a choice of either Hyrise or DuckDB.

We decided to build upon the Hyrise project due to its simplic-
ity and extensibility. While getting Firebolt production ready, the
fact that Hyrise is an academic system with limited SQL support
proved to be a challenge. For engineers building a new database
system today, using DuckDB is most likely a better starting point.
This is because DuckDB has matured significantly since we started
building Firebolt and is widely used nowadays.

At the same time, using Hyrise did prove to be a good choice for
our use case. Indeed, our initial instinct to go for it given its rela-
tive simplicity turned out to be true. We invested heavily to make
Firebolt’s parsing and planning layer production ready. Nowadays,
its open-source roots in Hyrise are hard to recognize. Our additions
include wide ranging extensions to the parser to give good SQL
coverage and considerable changes to the planning layer. Among
other things, we have added extensive support for composite data
types, changed the representation of the logical query plan to make

3https://calcite.apache.org/docs/powered_by.html
4https://github.com/duckdb/duckdb/tree/master/third_party/libpg_query#readme

it easier to build rule-based optimizations and added a variety of
new rules to the planner.

Our redesign of the logical query plan was heavily inspired by
Calcite. As it is the gold standard of extensible and feature-rich
open-source query planners, we decided to utilize many of the
concepts found in Calcite’s relational algebra representation. This
allows our planner to be future proof and extensible in terms of
new SQL features and optimization capabilities.

2.3 Runtime
The runtime is at the heart of a query engine. It is responsible for
the query evaluation and has to implement data types, functions
and relational operators such as joins and aggregations.

In a similar vein to the parsing and planning layers, Firebolt had
the choice of building a new query engine from scratch or boot-
strapping one from an existing open-source project. Many database
companies decided to build their runtime from scratch. Examples
include CockroachDB [2], Databricks [5] and Snowflake [10] . We
believe that in order to disrupt the data warehousing space as a
small startup, it is a better choice to start with an existing codebase
and allocate our comparatively limited engineering resources to
Firebolt’s unique differentiating features.

We had a few basic guardrails when deciding on which project
to use as a baseline for our runtime.

To support user-facing, data-intensive applications, we needed
a high-performance query engine allowing for low-latency query
processing. There are two modern approaches to building high-
performance runtimes – vectorization [6] and code generation [18].
We decided that we wanted to build Firebolt on top of a vectorized
runtime. While building a low-latency code generating engine is
possible, it requires substantial investment into an advanced com-
pilation stack [15, 16]. This increases engine complexity, makes it
harder to onboard new engineers, and retain high development
velocity. At the same time, code generating and vectorized engines
often perform similarly for OLAP workloads [14].

We also wanted the engine to be robust and have basic support
for distributed data processing. While there are a variety of interest-
ing academic and experimental open-source query engines, many of
those are not production ready or do not support distributed query
execution. Starting out with a battle-tested and horizontally scal-
able engine allowed us to quickly assemble a robust query engine
that could process massive data sets.

Alongside our runtime, we also wanted to bootstrap our stor-
age engine, in particular the file format. In order to build a high-
performance query engine, it was essential that the storage engine
uses a columnar data layout to efficiently support OLAP workloads
[1]. The challenges when bootstrapping a query runtime and stor-
age engine are similar to those encountered when bootstrapping
a parser and planner. It is possible to pick different systems as a
baseline for the storage engine and the query runtime, respectively.
However, both components share complex interfaces in order to
transfer data between the layers and facilitate data pruning. As
such, choosing a single project to supply both components makes
it significantly easier to build a high-performance system.

While there are multiple projects to choose as a baseline for the
SQL parser and planner, there are fewer options when choosing a

https://calcite.apache.org/docs/powered_by.html
https://github.com/duckdb/duckdb/tree/master/third_party/libpg_query#readme


Mosha Pasumansky and Benjamin Wagner

high-performance, distributed runtime. We quickly narrowed down
our choice to ClickHouse [9].

ClickHouse is designed to be fast5, and these claims are backed-
up by benchmarks6. ClickHouse uses vectorized query execution,
with limited support for runtime code generation through the
LLVM. ClickHouse is battle tested and widely used in production
environments 7. Finally, ClickHouse also has its own columnar file
format called MergeTree8. MergeTree is tightly integrated with
the query runtime and allows for efficient data pruning. All of the
above reasons made it easy to choose ClickHouse as a foundation
for the Firebolt runtime.

2.4 Connecting Planner and Runtime
Section 2.2 presented our decision to use Hyrise as a basis for our
query planner. Afterwards, Section 2.3 showed why we chose to
base the Firebolt runtime on ClickHouse. This Section outlines
how our approach to communication between planner and runtime
evolved over time.

Every node in the Firebolt cluster can serve both as query co-
ordinator running parser and planner, and as a runtime worker
executing parts of the larger query plan. This is shown in Figure 1.
When a query enters the system, it is routed to one of the nodes.
This node then acts as the coordinator. After query parsing and plan-
ning, it needs to initiate query execution. To achieve this, it needs
to transform the planner’s optimized LQP into a representation that
the ClickHouse-based runtime can understand. The ClickHouse
SQL dialect can serve as such a representation. The ClickHouse
parser transforms ClickHouse SQL into an internal parse tree that
can be executed directly. We used this to quickly build an initial
version of cross-component communication. Through a process we
called "backtranslate", an LQP within the planner was transformed
back to a representation in ClickHouse SQL. This representation
then yielded a ClickHouse query plan that conformed to the opti-
mized LQP chosen by the Firebolt planner.

This approach allowed us to get to a working product quickly,
but had multiple problems. When connecting planner and runtime
this way, a lot of time was spent generating ClickHouse SQL, just
to be instantly consumed by the ClickHouse parser again. Even
more importantly, a lot of valuable context about the structure of
the LQP was lost when going back to a SQL-based representation.

Because of this, we decided to completely replace the backtrans-
late flow. Nowadays, the Firebolt LQP gets transformed to a dis-
tributed query plan directly. This distributed query plan is then
disassembled into multiple stages. The coordinator sends stages to
different workers within the Firebolt cluster to facilitate distributed
query execution. For cross-network communication, we use a cus-
tom, protobuf-based serialization format. On the worker nodes, this
serialization format is used to assemble the runtime’s vectorized
relational operators. In the future, Substrait9 might be a viable alter-
native to using a custom serialization format. At the time of writing

5https://clickhouse.com/docs/en/faq/general/why-clickhouse-is-so-fast/
6https://clickhouse.com/benchmark/dbms/
7https://clickhouse.com/docs/en/faq/general/who-is-using-clickhouse
8https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/
mergetree/
9https://substrait.io/

however, Substrait is still undergoing rapid development and is
subject to breaking changes.

2.5 Distributed Execution
After choosing ClickHouse as the basis for the Firebolt runtime, we
also initially utilized ClickHouse’s approach to distributed query
processing.

Distributed query processing in ClickHouse works very well for
certain shapes of queries. Examples are queries with selective table
scans, distributed aggregations on low-cardinality group-by fields,
and broadcast joins. At the same time, ClickHouse does not support
many important SQL patterns commonly found in data warehous-
ing such as joins between two large relations, aggregations with
high-cardinality group-by fields, window functions without granu-
lar PARTITION BY clauses, and large distributed sorts.

We decided to move away completely from the ClickHouse dis-
tributed execution stack to better serve the data-intensive work-
loads of our customers. For this, we implemented a new Firebolt
distributed processing stack. The optimized LQP returned by our
planner is broken up into stages that are connected through shuffle
operators. By scaling out, this allows us to execute queries that our
original runtime struggled with. Examples include queries with
high-cardinality aggregations or joins of two large tables. We will
share more about our distributed processing stack in future publi-
cations.

Implementing this new distributed processing stack was only
possible because we decided early on that our runtime should be
a hard fork of ClickHouse. This gives us the flexibility to perform
significant refactoring of interfaces, change the overall architecture
of the system, and build a runtime that is optimized for the needs
of our customers.

3 TESTING
Building software is not just about writing code. It is also about
making sure that the code works properly. This is especially impor-
tant for database systems. Users entrust us with their data and rely
on us to produce correct query results. This is not something to be
taken lightly.

While we invested heavily into writing our own test cases, we
only hand-crafted a small fraction of the test cases that are available
elsewhere. Fortunately, when integrating open-source test cases
you do not have to choose between different test suites and frame-
works. Rather, you can use multiple different ones to combine their
own unique strengths.

At Firebolt, we aimed to go for maximum coverage and took test
cases from wherever we could. This meant that many test cases
did not pass for a variety of reasons. Differences in SQL dialect,
differences in features, unspecified behaviour, and much more make
it hard to port over test cases from other frameworks and have them
"just work". However, integrating with a diverse set of open-source
test suites helped us identify real problems. The passing tests make
sure we do not regress in functionality or correctness.

3.1 Firebolt Query Verification Framework
Most SQL query test frameworks follow similar patterns – they are
based on one or multiple test files outlining a data flow. First off,

https://clickhouse.com/docs/en/faq/general/why-clickhouse-is-so-fast/
https://clickhouse.com/benchmark/dbms/
https://clickhouse.com/docs/en/faq/general/who-is-using-clickhouse
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree/
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree/
https://substrait.io/


Assembling aQuery Engine From Spare Parts

SQL DDL queries may be used to define schemata. Then, SQL DML
queries hydrate tables with data. Finally, the SQL queries compris-
ing the actual test are run. These are mostly SELECT statements.
Their results are checked against pre-defined expected results.

We have built a custom test framework, named "PeaceKeeper",
to follow a similar pattern. PeaceKeeper knows how to set up a
Firebolt cluster in multiple environments. These can be local runs
on a developer machine allowing for fast iteration, CI pipelines,
or a powerful distributed SQL cluster in the cloud. PeaceKeeper
uses test files with input queries and expected results. We have
implemented 2K+ Firebolt specific SQL query test cases.

3.2 Clickhouse Functional Tests
Given that our runtime is based off ClickHouse, it was natural
to integrate the 30K+ functional tests provided by ClickHouse10.
However, since the ClickHouse SQL dialect is very different from
Firebolt’s SQL dialect, these tests do not pass through our entire
query pipeline. Rather, they work directly against the runtime. We
are deprecating these test cases, since our distributed execution
stack outlined in Section 2.5 is not integrated with the CickHouse
SQL parsing layers anymore.

3.3 Postgres Regression Tests
Since Firebolt strives to be as close to Posgres SQL as possible, it
made sense to reuse the Postgres test suite. It has 12K+ tests in its
regression suite11. Not all of the Postgres constructs are supported
in Firebolt. However, for the ones that Firebolt does support, we are
able to verify that Firebolt behaves in the sameway as Postgres. This
was done through an automated script that converts the Postgres
regression tests into the PeaceKeeper format.

3.4 ZetaSQL Compliance Tests
ZetaSQL has 60K+ tests in its compliance test suite12. The distinc-
tive thing about the ZetaSQL compliance tests is that a very large
portion of the test cases focus on SQL expressions and individual
functions, extensively covering different boundary conditions –
something that many other test suites only do in a cursory manner.
ZetaSQL’s compliance tests are mostly code-based as opposed to
file-based. In order to keep our testing tools consistent, we wrote a
translator program to capture the test queries in the PeaceKeeper
format.

3.5 SQLLogicTest
The pinnacle of functional SQL testing is SQLLite’s SQLLogicTest
framework13. It contains 7M+ test queries (that’s 7 million!). We
again wrote a script that ports the SQLLogicTests into PeaceKeeper
format. A similar approach was taken by DuckDB14. Due to the
sheer volume of queries, we are still in the process of going over
each individual result and sorting out errors.

10https://clickhouse.com/docs/en/development/tests/
11https://www.postgresql.org/docs/current/regress.html
12https://github.com/google/zetasql/tree/master/zetasql/compliance
13https://www.sqlite.org/sqllogictest/doc/trunk/about.wiki
14https://duckdb.org/dev/testing

4 LESSONS LEARNED
In the following, we want to briefly summarize some of the lessons
learned while building Firebolt.

Choosing a Solid Foundation. Especially for query parsers and plan-
ners, a wide variety of mature projects can be used as a baseline.
While we found Hyrise to be a great foundation and are happy
with the choice we made at the time, we would recommend using
DuckDB or Calcite for engineers assembling a new system today. Al-
though there are fewer choices for a high-performance distributed
runtime, we found ClickHouse to be a robust and extensible founda-
tion. When building a production system, we recommend choosing
battle-tested projects as a starting point.

Building in a Single Language. Assembling the system from projects
written in a single programming language allows for higher velocity.
This is especially true in the early days of a startup when developers
might have to frequently switch between different components or
build features across the whole stack.

Connecting Different Systems. When choosing different systems
for e.g. the planner and runtime, engineering teams need to invest
heavily in building clean interfaces between these components. We
expect similar effects when basing the parser and planner, or the
runtime and storage engine on different projects. Because of this,
we recommend choosing as few systems as possible in order to
assemble a new database management system.

We only chose two systems written in the same programming
language at Firebolt. The effort required to connect them and turn
them into a production-ready system was still significant. Moving
the systems ever closer requires a concerted effort and is still ongo-
ing. Our new distributed execution stack outlined in Section 2.5 is
an example for this. But much work remains to be done. A good
example is unifying the type systems across planner and runtime.
We believe that not having to integrate widely different projects is
the main benefit of building a new system from scratch.

Maybe somewhat surprisingly, the Apache Arrow15 project did
not play a significant role while composing Firebolt’s query engine.
Many existing open-source projects use Arrow to get data into
and out of the system. At Firebolt, all data transfer happens within
the distributed primitives of the runtime and when returning data
from the runtime back to the user. As a result, we did not need to
integrate with Arrow to e.g. facilitate cross-project data transfer. We
expect that assembling database systems from different components
will become easier as Arrow and related projects find even wider
adoption across open-source projects.

Testing the System. We recommend integrating with as many test
frameworks as early as possible. While this might seem like a lot
of work in the beginning, it pays off in the long run. It allows
teams to quickly catch potential compatibility issues in the targeted
SQL dialect, as well as subtle differences in the runtime behaviour
compared to other systems. However, sorting through test case
failures to figure which ones point at underlying issues and which
ones are more benign takes a lot of time.

15https://arrow.apache.org/

https://clickhouse.com/docs/en/development/tests/
https://www.postgresql.org/docs/current/regress.html
https://github.com/google/zetasql/tree/master/zetasql/compliance
https://www.sqlite.org/sqllogictest/doc/trunk/about.wiki
https://duckdb.org/dev/testing
https://arrow.apache.org/


Mosha Pasumansky and Benjamin Wagner

SQL Dialect
and Parser Planner Single-Node

Runtime
Distributed
Execution

Inspired By Postgres Calcite
Based On Hyrise Hyrise ClickHouse Firebolt

Tested By
Postgres Regression Tests
ZetaSQL Compliance Tests

SQLite SQLLogicTest
Table 1: A summary of the open-source components that
served as a foundation or inspiration to build and test the
Firebolt cloud data warehouse.

5 CONCLUSION
Throughout this paper, we have shown how we used different open-
source components as stepping stones to assemble the Firebolt
query engine. These components are summarized in Table 1.

The large number of high-quality open-source projects have
made it possible for us to build Firebolt in less than 18months. Going
this route as a startup is a smart choice. It allows the organization to
quickly converge to a working system. Given the number of mature
commercial systems in the space, this allows engineering teams to
focus on differentiating features. We are thankful to the open source
community, and we intend to contribute back wherever possible.

Assembling a system as outlined in this paper is only the very
first step. Building a world-class, high-performance database sys-
tems is a marathon and not a sprint – the hard work only starts
once a first version of the system is running. For us, deciding to
be a hard fork of our open-source roots is essential. It allows for
the flexibility to completely redesign the system to better meet our
customer’s needs. Firebolt is investing heavily into its engineering
teams, and large projects are ongoing to improve or rewrite our
storage, execution and metadata layers. We look forward to sharing
more about these projects in future publications.

ACKNOWLEDGMENTS
We thank the contributors and maintainers of Hyrise and Click-
House for providing an exceptional foundation for Firebolt to inno-
vate on.

This work reflects significant effort by Firebolt’s engineering
teams. It would not have been possible without the exceptional
work of current and past Firebolt engineers Ariel Yaroshevich,
Eldad Farkash, Daniel Heilper, Jonathan Goldfeld, Cosmin Pop,
Daniel Ungur, Rares Mironeasa, Ronen Fishman, Joel Shalit, Izik
Orgad, Ernest Zaslavsky, Jonathan Doron, Svetlana Messel, Artem
Yasynskyi, Vadim Entov, Ivan Koptiev, Boaz Farkash, Elad Dolev,
Ori Brotovski, Michael Dessenov, Vlad Davidchenko, Kfir Yehuda,
Shahar Shalev, Galit Koka Elad, Oren Wegner, Leonid Bobovich,
Itay Israelov, Viacheslav Zubko, Michael Umansky, Arkadi Ka-
gan, Noam Fisher, Yarin Hananiya, Kevin Marr, Cody Schwarz,
Gil Cizer, Andrey Kisel, Roman Rustakov, Oleksandr Dudchenko,
Francesco Dondi, Ido Kidron, Yuval Boker, Sasha Solganik, David
Boublil, Michal Szadkowski, DanyAzriel, James Hill, Imre Palik, Ilya
Yakubenko, Nikolay Mizin, Octavian Zarzu, Michael Kravchenko,
David Welch, Lorenz Hübschle-Schneider, Dima Sporov, Nir Levy,
MaximAxelrod, Sebastian Kurella, Loic Reyreaud, Leonard vonMer-
zljak, Arnaud Comet, Brit Myers, Jusufadis Bakamović, Tobias Hu-
mig, Tal Zelig, Shira Fried, Peter McConnell, Zhen Li, Misha Shneer-
son, Michael Moursalinov, Aurash Behbahani, Zuyu Zhang, Gracco

Guimarães, Andrés Senac Gonezález, Arsenii Krasikov, Bruhathi
Sundarmurthy, Branden Pleines, Giuseppe Mazzotta, Anton Perkov,
Asy Ronen, Andrei Burago, Alex Hall, Ron Dubinsky, and Ying Li.

REFERENCES
[1] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel Madden,

et al. 2013. The design and implementation of modern column-oriented database
systems. Foundations and Trends in Databases 5, 3 (2013), 197–280.

[2] Subiotto Marques Alfonso and Rafi Shamim. 2019. How We Built a Vectorized
Execution Engine. Cockroach Labs. https://www.cockroachlabs.com/blog/how-
we-built-a-vectorized-execution-engine/

[3] David F. Bacon, Nathan Bales, Nico Bruno, Brian F. Cooper, Adam Dickinson,
Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan,
Alexander Lloyd, Sergey Melnik, Rajesh Rao, David Shue, Christopher Taylor,
Marcel van der Holst, and DaleWoodford. 2017. Spanner: Becoming a SQL System.
In Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery,
New York, NY, USA, 331–343. https://doi.org/10.1145/3035918.3056103

[4] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 221–230. https:
//doi.org/10.1145/3183713.3190662

[5] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy G. Armstrong,
David Cashman, Ankur, Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson,
Arvind Sai Krishnan, Paul Leventis, Ala, Luszczak, Prashanth Menon, Mostafa
Mokhtar, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van Bussel, Herman
van Hovell, Maryann Xue, Reynold Xin, and Matei A. Zaharia. 2022. Photon:
A Fast Query Engine for Lakehouse Systems. In Proceedings of the 2022 ACM
SIGMOD International Conference on Management of Data (New York, New York,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
14. https://doi.org/10.1145/3514221.3526054

[6] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In CIDR, Vol. 5. Citeseer, 225–237.

[7] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mc-
cormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar
Mittal, Roee Ebenstein, Nikita Mikhaylin, Hung-ching Lee, Xiaoyan Zhao, Tony
Xu, Luis Perez, Farhad Shahmohammadi, Tran Bui, Neil McKay, Selcuk Aya, Vera
Lychagina, and Brett Elliott. 2019. Procella: Unifying Serving and Analytical Data
at YouTube. Proceedings of the VLDB Endowment 12, 12 (aug 2019), 2022–2034.
https://doi.org/10.14778/3352063.3352121

[8] Sid Choudhury. 2020. WhyWe Built YugabyteDB by Reusing the PostgreSQL Query
Layer. YugabyteDB. https://blog.yugabyte.com/why-we-built-yugabytedb-by-
reusing-the-postgresql-query-layer/

[9] ClickHouse. 2021. Overview of ClickHouse Architecture. ClickHouse. https:
//clickhouse.com/docs/en/development/architecture/

[10] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:
//doi.org/10.1145/2882903.2903741

[11] Markus Dreseler, Jan Kossmann,Martin Boissier, Stefan Klauck,Matthias Uflacker,
and Hasso Plattner. 2019. Hyrise Re-engineered: An Extensible Database Sys-
tem for Research in Relational In-Memory Data Management. In Advances in
Database Technology - 22nd International Conference on Extending Database Tech-
nology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019, Melanie Herschel, Helena
Galhardas, Berthold Reinwald, Irini Fundulaki, Carsten Binnig, and Zoi Kaoudi
(Eds.). OpenProceedings.org, 313–324. https://doi.org/10.5441/002/edbt.2019.28

[12] Firebolt. 2022. The Firebolt Cloud Data Warehouse Whitepaper. Firebolt Analytics.
https://www.firebolt.io/resources/firebolt-cloud-data-warehouse-whitepaper

[13] Lukas Fittl. 2021. Introducing pg_query 2.0: The easiest way to parse Postgres queries.
pganalyze. https://pganalyze.com/blog/pg-query-2-0-postgres-query-parser

[14] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter Boncz. 2018. Everything You Always Wanted to Know about Compiled and
Vectorized Queries but Were Afraid to Ask. Proceedings of the VLDB Endowment
11, 13 (sep 2018), 2209–2222.

[15] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying
Start: Fast Compilation and Fast Execution of Relational Queries in Umbra. The
VLDB Journal 30, 5 (sep 2021), 883–905. https://doi.org/10.1007/s00778-020-
00643-4

[16] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive execution of
compiled queries. In 2018 IEEE 34th International Conference on Data Engineering

https://www.cockroachlabs.com/blog/how-we-built-a-vectorized-execution-engine/
https://www.cockroachlabs.com/blog/how-we-built-a-vectorized-execution-engine/
https://doi.org/10.1145/3035918.3056103
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/3514221.3526054
https://doi.org/10.14778/3352063.3352121
https://blog.yugabyte.com/why-we-built-yugabytedb-by-reusing-the-postgresql-query-layer/
https://blog.yugabyte.com/why-we-built-yugabytedb-by-reusing-the-postgresql-query-layer/
https://clickhouse.com/docs/en/development/architecture/
https://clickhouse.com/docs/en/development/architecture/
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.5441/002/edbt.2019.28
https://www.firebolt.io/resources/firebolt-cloud-data-warehouse-whitepaper
https://pganalyze.com/blog/pg-query-2-0-postgres-query-parser
https://doi.org/10.1007/s00778-020-00643-4
https://doi.org/10.1007/s00778-020-00643-4


Assembling aQuery Engine From Spare Parts

(ICDE). IEEE, 197–208. https://doi.org/10.1109/ICDE.2018.00027
[17] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-

akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min,
Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive SQL
Analysis at Web Scale. Proceedings of the VLDB Endowment 13, 12 (aug 2020),
3461–3472. https://doi.org/10.14778/3415478.3415568

[18] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proceedings of the VLDB Endowment 4, 9 (jun 2011), 539–550. https:
//doi.org/10.14778/2002938.2002940

[19] PostgreSQL. 2021. Frontend/Backend Protocol. Postgres. https://www.postgresql.
org/docs/14/protocol.html

[20] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 1981–1984. https://doi.org/10.1145/3299869.
3320212

[21] Raghu Ramakrishnan and Johannes Gehrke. 2000. Database Management Systems
(2nd ed.). McGraw-Hill, Inc., USA.

[22] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig, Petros Venetis, Chanjun
Yang, Keith Peters, Jeff Shute, Daniel Tenedorio, Himani Apte, Felix Weigel,
David Wilhite, Jiacheng Yang, Jun Xu, Jiexing Li, Zhan Yuan, Craig Chasseur,
Qiang Zeng, Ian Rae, Anurag Biyani, Andrew Harn, Yang Xia, Andrey Gubichev,
Amr El-Helw, Orri Erling, Zhepeng Yan, Mohan Yang, Yiqun Wei, Thanh Do,
Colin Zheng, Goetz Graefe, Somayeh Sardashti, Ahmed M. Aly, Divy Agrawal,
Ashish Gupta, and Shiv Venkataraman. 2018. F1 Query: Declarative Querying
at Scale. Proceedings of the VLDB Endowment 11, 12 (aug 2018), 1835–1848.
https://doi.org/10.14778/3229863.3229871

[23] Jeff Shute. 2022. GoogleSQL: A SQL Language as a Component. (2022). https:
//cdmsworkshop.github.io/2022/invited.html#invited5 First International Work-
shop on Composable Data Management Systems.

[24] Octavian Zarzu. 2023. Firebolt Indexes in Action. Firebolt Analytics. https:
//www.firebolt.io/blog/firebolt-indexes-in-action

https://doi.org/10.1109/ICDE.2018.00027
https://doi.org/10.14778/3415478.3415568
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://www.postgresql.org/docs/14/protocol.html
https://www.postgresql.org/docs/14/protocol.html
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.14778/3229863.3229871
https://cdmsworkshop.github.io/2022/invited.html#invited5
https://cdmsworkshop.github.io/2022/invited.html#invited5
https://www.firebolt.io/blog/firebolt-indexes-in-action
https://www.firebolt.io/blog/firebolt-indexes-in-action

	Abstract
	1 Introduction
	2 Query Engine
	2.1 SQL Dialect
	2.2 SQL Parser and Planner
	2.3 Runtime
	2.4 Connecting Planner and Runtime
	2.5 Distributed Execution

	3 Testing
	3.1 Firebolt Query Verification Framework
	3.2 Clickhouse Functional Tests
	3.3 Postgres Regression Tests
	3.4 ZetaSQL Compliance Tests
	3.5 SQLLogicTest

	4 Lessons Learned
	5 Conclusion
	Acknowledgments
	References

